本篇文章给大家谈谈测绘遥感基础知识,以及测绘遥感基础知识培训对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
目录一览:
遥感科学与技术和测绘工程有什么区别?哪个就业前景好?
目前遥感是被划分在测绘类专业之下的,测绘类行业就业较好。
遥感科学与技术主要研究遥感技术、电子技术和计算机科学与技术等方面的基本知识和基本技能,进行遥感电子设备与系统的研制、应用系统和系统集成的建设与开发、空间信息系统和管理信息系统的建设和应用等。例如:GPS导航系统的研发,电子地图的绘制,生态环境遥感监测等。
课程体系:
《地理信息系统原理》、《传感器技术与应用》、《航空与航天摄影》、《摄影测量基础》、《近景摄影测量》、《大地测量学基础》、《地图学基础》、《数字图像处理》、《遥感图像处理与解译》、《遥感物理基础》。
添加微信好友, 获取更多信息
复制微信号
就业方向:
测绘类企业:摄影测量、工程测绘、地图绘制、图像处理; IT类企业:3S技术、遥感系统研发、空间信息系统建设。
考研方向:
摄影测量与遥感、测绘工程、地图学与地理信息系统、电子与通信工程、地图制图学与地理信息系统、大地测量学与测量工程。
遥感科学与技术的就业前景怎么样?
遥感科学与技术专业就业前景怎么样?根据95份就业数据分析出:
遥感科学与技术专业在所有 1099个专业中,就业排名第865。
遥感科学与技术专业在工学170个专业中,就业排名第120。
遥感科学与技术专业在测绘类4个专业中,就业排名第3。
培养目标:培养具备遥感科学与技术专业基础理论、基本知识和基本技能;能从事遥感科学与技术及相关领域的研究、开发、设计、教学、生产及管理等方面的工作,具有较强实际工程能力和一定研究能力的复合应用型人才。
就业方向:遥感科学与技术专业毕业生可从事测绘、遥感、地质、水利、交通、农业、林业、石油、矿山、煤炭、国防、军工、城建、环保、文物保护等行业和部门从事与摄影测量与遥感相关的科研、教学、设计、生产及管理工作。
专业老师在线权威答疑 zy.offercoming.com
高光谱遥感概述
所谓高光谱遥感,即高光谱分辨率遥感,指利用很多很窄的电磁波波段(通常<10 nm)从感兴趣的物体获取有关数据;与之相对的则是传统的宽光谱遥感(通常>100nm)且波段并不连续。高光谱图像是由成像光谱仪获取的,成像光谱仪为每个像元提供数十至数百个窄波段光谱信息,产生一条完整而连续的光谱曲线。它使本来在宽波段遥感中不可探测的物质,在高光谱中能被探测。
近20年来,高光谱遥感技术迅速发展,它集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体,已成为当前遥感领域的前沿技术之一。
1.2.1 高光谱遥感的起源和发展
随着基础理论和材料科学的不断进步,近20年来,高光谱遥感技术迅速发展,已成为除雷达遥感、激光遥感、超高分辨率遥感等技术以外,当前遥感领域的又一重要研究方向。
1.2.1.1 国外的高光谱成像仪研制情况
由于高光谱遥感在地物属性探测方面的巨大潜力,成像光谱技术得到了普遍重视。
(1)机载高光谱成像仪
1983年,之一幅高光谱影像由美国研制的航空成像光谱仪(AIS-1)获取,标志着之一代高光谱成像仪的面世。1987年,美国宇航局(NASA)喷气推进实验室(JPL)研制成功航空可见光/红外成像光谱仪(AVIRIS),这标志着第二代高光谱成像仪的问世。
(2)星载高光谱成像仪
在航天领域,由美国喷气推进实验室研制的对地观测计划中的中分辨率成像光谱仪(MODIS),随TER2RA卫星发射,成为之一颗在轨运行的星载成像光谱仪,从2000年开始向地面传送图像。
2000年,NASA发射的EO21卫星上搭载的高光谱成像仪(Hyperion),地面分辨率为30m,已在矿物定量填图方面取得了很好的应用效果。2002年美国的海军测绘观测(NEMO)卫星携带的海岸海洋成像光谱仪(COIS)具有自适应性信号识别能力,满足军用和民用的不同需求。另外,2007年6月交付美Kirtland空军基地的高光谱成像传感器将通过Tac2Sat23卫星载入太空。
目前,许多国家都在积极研制自己的高光谱传感器,已明确有发射计划的有德国环境监测与分析计划的EnMAP,南非的多传感器小卫星成像仪M *** I和加拿大高光谱环境与资源观测者HERO。
1.2.1.2 国外高光谱影像分析技术的研究现状
在成像光谱仪快速发展的同时,地物光谱数据库、高光谱影像分析技术研究也得到了迅速发展。
地物光谱数据库技术方面,以美国最为先进,有代表性的主要有JPL标准波谱数据库、USGS波谱数据库、ASTER波谱数据库和IGCP2264波谱数据库。此外,美国空军部门和环保局针对大气污染和空气成分的诊断建立了AEDC/EPA光谱数据库,并针对美国海军研究室研制的HYDICE成像光谱仪建立了森林高光谱数据库等。部分其他国家也展开了光谱数据库技术研究和建设工作,如英国在20世纪90年代初针对海水颜色研究建立了海水光谱数据库。
美国国家航空航天局(NASA)、欧洲航天局(ESA)、日本国家空间发展局(NASDA)和大学及研究所都有专门的高光谱影像应用分析的研究机构。
国外商业遥感图像处理系统,相继增加成像光谱数据处理模块,其中具有代表性的有RSI公司的ENVI,PCI Geomatics公司的PCI,MicroImages公司的 *** mips等。
1.2.1.3 国内高光谱遥感技术发展现状
我国紧密跟踪国际高光谱遥感技术的发展,并结合国内不断增长的应用需求,于20世纪80年代中后期着手发展自己的高光谱成像系统。主要的成像光谱仪有中国科学院上海技术物理研究所研制的推扫式成像光谱仪(PHI)系列、实用型模块化成像光谱仪(OMIS)系列、中国科学院长春光学精密机械与物理研究所研制的高分辨率成像光谱仪(C2HRIS)和西安光机所研制的稳态大视场偏振干涉成像光谱仪(SLPIIS)。中国科学院上海技术物理研究所研制的中分辨率成像光谱仪(CMODIS)于2002年随“神舟”三号发射升空,并成功获取航天高光谱影像,其获取影像从可见光到近红外共30个波段,中红外到远红外的4个波段,空间分辨率为500 m。
2007年10月发射的“嫦娥1号”卫星已携带中国科学院西安光学精密机械研究所研制的干涉成像光谱仪升空,用于获取月球表面二维多光谱序列图像及可分辨地元光谱图,通过与其他仪器配合使用对月球表面有用元素及物质类型的含量与分布进行分析,获得的数据用于编制各元素的月面分布图。
从2007年到2010年,我国将组建环境与灾害监测预报小卫星星座,将携带超光谱成像仪,采用0.45~0.95μm波段,平均光谱分辨率为5nm,地面分辨率为100m。
我国在积极研制具有自主知识产权的成像光谱仪的同时,在地物光谱数据技术、高光谱影像分析技术等方面的研究中也取得了一系列可喜的成果。
20世纪90年代初期,中国科学院安徽光学精密机械研究所、遥感所等单位对大量的典型地物进行了波谱采集,建立了我国之一个综合性“地物波谱特性数据库”。1998年,中国国土资源航空物探与遥感中心建立了“典型岩石矿物波谱数据库”,其中包含了我国主要的典型岩石和矿物500 余种。2000年,中国科学院遥感所基于GIS和 *** 技术研制了典型地物波谱数据库及其管理系统,记录了10000多条地物波谱,并能动态生成相应的波谱曲线和遥感器模拟波段,实现了波谱数据库与“3 S”技术的链接。
1.2.2 高光谱成像仪简介
1.2.2.1 国外高光谱成像仪系统介绍
(1)航空高光谱成像仪
1983年,世界上之一台成像光谱仪AIS-1(Aero Imaging Spectrometer-1)在美国喷气推进实验室研制成功,并成功应用于植被研究、矿物填图等方面,向世界展示了高光谱成像技术具有的潜力。此后,美国机载先进的可见光红外成像光谱仪(AVIRIS)、加拿大的荧光线成像光谱仪(FLI)和在此基础上发展的小型机载成像光谱仪(AIS)、美国Deadalus公司的MIVIS,GER公司的79波段机载成像光谱仪(ROSIS-10 和 ROSIS-20)、美国海军研究所实验室的超光谱数字图像采集试验仪(HYDICE)先后研制成功(表1.1)。
表1.1 国外主要的机载高光谱成像仪信息
近年来,成像光谱技术在资源调查、农作物长势、病虫害、土壤状况、地质勘查等方面的成功应用让世界各国看到了这项新技术的巨大前景与潜力,世界上一些有条件的国家竞相投入到成像光谱仪的研制和应用中来。各国在研制的同时纷纷参考已有成像光谱仪的先进技术,使得新研制的系统在继承了老系统各种优势的同时,很多方面得到了进一步的提高,在稳定性、探测效率、综合性能等方面均得到了很大的进步。其中,具有代表性的有美国的Probe、澳大利亚的HyMap、美国GER公司为德士古(TEXACO)石油公司专门研制的TEEMS系统等。
Probe-1和Probe-2是Earth Search Sciences公司开发的另一个有影响的航空成像光谱仪系统,该系统在0.4~2.5μm区有128个波段,光谱分辨率为18 nm。
HyMap即“高光谱制图仪”(hyperspectral mapper)的简称,是以澳大利亚Intergrated Spectronics公司为主研制的。HyMap在0.25~0.45μm光谱范围有126个波段,同时在3~5μm和8~10μm两个波长区设置了两个可供选择的波段,共有128个波段。其数据在光谱定标、辐射定标和信噪比等方面都达到了较高的性能,总体光谱定标精度优于0.5 nm;短波红外波段(2.0~2.5μm)的信噪比都高于500∶1 ,有的波段其信噪比甚至高达1000∶1。
TEEMS是德士古能源和环境多光谱成像仪(Texaco energy & environmental multispectral imaging spectrometer)的简称。这是一台由美国地球物理和环境研究公司(GER)应德士古的技术要求与德士古的专家合作专门研制的具有200 多个波段、性能十分先进的实用型高光谱成像仪。该系统在紫外、可见光、近红外、短波红外、热红外波段等波谱均具有成像能力,从而在石油地质勘探特别是在勘探与油气藏有关的特征中具有很大潜力。
近年来热红外成像光谱仪已有了实质性的进展。更具有代表性的是美国宇航公司研制的空间增强宽带阵列光谱仪系统(spatially enhanced broadband array spectrograph system,SEBASS)。SEBASS有两个光谱区:中红外,3.0~5.5μm,带宽为0.025μm;长波红外,7.8~13.5μm,带宽为0.04μm。它在中波红外区和长波红外区分别有100个、142个波段;所使用的探测器为两块128*128的Si:As焦平面,有效帧速率为120Hz,温度灵敏度为0.05℃,信噪比>2000。热红外成像光谱仪为更好地反映地物的本质提供了珍贵的数据,已经被应用于探矿、地质填图、环境监测、农林资源制图、植被长势等诸多领域。
(2)航天高光谱成像仪
美国先后研制出中分辨率成像光谱仪(MODIS),EO-1高光谱卫星,并与日本合作研制出的先进星载热发射反射辐射计(advanced satellite thermal emission/reflection radiometer)以及美国军方的“Might-Sat”高光谱卫星,在航天成像光谱技术研究方面一直在世界遥遥领先。
MODIS是EOS-AM1卫星(1999年12月发射)和EOS-PM1(2002年5月发射)上的主要探测仪器——中分辨率成像光谱仪,也是EOS Terra平台上唯一进行直接广播的对地观测仪器。通过MODIS可以获取0.4~14μm范围内的36个波段的高光谱数据,为开展自然灾害、生态环境监测、全球环境和气候变化以及全球变化的综合性研究提供了重要的数据源。
MODIS是搭载在terra和aqua卫星上的一个重要的传感器,是卫星上唯一将实时观测数据通过x波段向全世界直接广播,并可以免费接收数据并无偿使用的星载仪器。MODIS可获取0.4~14μm范围内的36个波段的高光谱数据,为开展生态环境研究、自然灾害监测、全球环境和气候变化等研究提供了重要的数据源。
ASTER搭载在Terra卫星上的星载热量散发和反辐射仪,是于1999年12月18日发射升空的,由日本国际贸易和工业部制造。一个日美技术合作小组负责该仪器的校准确认和数据处理。ASTER是唯一一部高分辨解析地表图像的传感器,其主要任务是通过14个频道获取整个地表的高分辨解析图像数据——黑白立体照片。ASTER能在4到16天之内对同一地区进行成像,具有重复覆盖地球表面变化区域的能力。ASTER数据特点之一是基于用户要求的观测,即根据用户提出的要求来随时随地地获取影像。ASTER的宽谱覆盖和高分辨能力给科学家们在诸如监测冰河的前进与退却,对潜在的活火山的监测,鉴别作物能力,对云层形态及物理状况的监测,湿地评估,热污染监测,珊瑚礁的退化,土壤及地质的表面温度绘图,以及测量地表的热平衡等众多学科领域提供了可供鉴定的信息。
美国宇航局(NASA)的地球轨道一号(EO-1)是美国NASA新千年计划的一部分,在2000年11月21日发射。地球观测1号卫星与LandSat-7覆盖相同的地面轨道,两颗卫星对同一地面的探测时间相差约1分钟的时间。EO-1带有三个基本的遥感系统,即高级陆地成像仪(advanced land imager,ALI),高光谱成像仪(HYPERION)以及大气校正仪(liner etalon imaging spectrometer arrey atmospheric correction,LAC)。EO-1上搭载的高光谱遥感器hyperion是新一代航天成像光谱仪的代表,也是目前唯一在轨的星载高光谱成像光谱仪以及唯一可公开获得数据的高光谱测量仪,共有242个波段,光谱范围为400~2500nm,光谱分辨率达到10nm,空间分辨率为30m。
2000年7月,美国发射的MightSat-Ⅱ卫星上搭载的傅立叶变换高光谱成像仪(fourier transform hyperspectral imager,FTHSI)是干涉成像光谱仪的成功典范。
欧洲空间局于2001年10月成功发展了基于空中自治小卫星PROBA小卫星的紧密型高分辨率成像光谱仪(CHRIS),并发射成功。CHRIS在415~1050μm的成像范围内有五种成像模式,不同的模式下其波段数目、光谱分辨率和空间分辨率不等,波段数目分别是18 ,37和62 ,光谱分辨率为5~15nm,空间分辨率为17~20m或者34~40m。CHRIS能够从五个不同的角度(观测模式)对地物进行观测,这种设计使得其能获取地物反射的方向性特征。
欧洲空间局继美国AM-1 MODIS之后于2002年3月又成功发射了Envisat卫星,这是一颗结合型大平台先进的极轨对地观测卫星。其中分辨率成像光谱仪(MERIS)为一视场角为68.5°的推扫型中分辨率成像光谱仪,其地面分辨率为300m,在可见光-近红外光谱区有15个波段,可通过程序控制选择和改变光谱段的布局。
日本继ADEOS-1之后于2002年12月发射了后继星ADEOS-2 ,其上搭载了日本宇宙开发事业团的两个遥感器(AMSR和GLI)和国际或国内合作者提供的三个遥感器(POLAR,ILAS-Ⅱ,Sea Winds)。GLI在可见光-近红外和短波红外分别有23个、6个波段,而在中红外和热红外则有7个波段。到目前为止,已发射的具有代表性的星载成像光谱仪如表1.2所示。
表1.2 国外主要星载高光谱成像仪
1.2.2.2 我国高光谱成像仪系统介绍
(1)航空高光谱成像仪
我国成像光谱仪的发展经历了从多波段扫描仪到成像光谱扫描,从光机扫描到面阵CCD探测器固态扫描的发展过程。
“八五”期间,新型模块化航空成像光谱仪(modular aero imaging spectrometer,MAIS)的研制成功标志着我国的航空成像光谱仪技术和应用取得了重大突破。此后我国自行研制的推扫型成像光谱仪(PHI)和实用型模块成像光谱仪系统(OMIS)在世界航空成像光谱仪大家庭里占据了重要的地位。
(2)航天高光谱成像仪
我国于2002年3月发射的神舟3号无人飞船中就搭载了一个中分辨率的成像光谱仪(CMODIS),该仪器共有34个波段,波长范围在0.4~12.5μm。此外,环境减灾卫星搭载了115个波段的高光谱遥感器。“风云-3”气象卫星搭载的中分辨率成像光谱仪具有20个波段,成像范围包括可见光、近红外、中红外和热红外;“嫦娥一号”卫星搭载了我国自行研制的干涉成像光谱仪来探测月球物质。
1.2.3 高光谱遥感成像特点与数据表达
高光谱成像获取的图像包含了丰富的空间、辐射和光谱三重信息。其主要特点是将传统的图像维与光谱维信息融合为一体,在获取地表空间图像的同时,得到每个地物的连续光谱信息。高光谱数据是一个光谱图像的立方体,它由空间图像维、光谱维(从高光谱图像的每一个像元中可以获得一个“连续”的光谱曲线)和特征空间维(高光谱图像提供的是一个超维特征空间,挖掘高光谱信息需要深切了解地物在高光谱数据形成的N维特征空间中分布的特点与行为)。
1.2.4 高光谱遥感的主要应用领域
由于高光谱遥感能提供更多的精细光谱信息,有些学者将高光谱遥感的研究从最开始的矿物识别扩展到了水体、植被与生态、环境资源勘探等方面,但目前主要集中在地质、植被和水环境等研究领域。
1.2.4.1 在植被监测中的应用
高光谱遥感由于其具有超高的光谱分辨率,为植被参数估算与分析,植被长势监测及估产等方面提供了有力的支撑。
1)植物的“红边”效应:“红边(REP)”是绿色植物叶子光谱曲线在680~740nm之间变化率最快的点,也是一阶导数光谱在该区间内的拐点。“红边”是植物光谱曲线最典型的特征,能很好地描述植物的健康及色素状态。当“红边”向红外方向移动时,一般可以判定绿色植物叶绿素含量高、生长活力旺盛;相反,当“红边”向蓝光方向移动时,一般可能是植物处于缺水等原因造成叶片枯黄等不健康状态。当植物覆盖度增大时“红边”的斜率会变陡。
2)植被指数:植被指数主要反映植被在可见光、近红外波段反射与土壤背景之间差异的指标,各个植被指数在一定条件下能用来定量说明植被的生长状况,是利用遥感光谱数据监测地面植物生长和分布、定性、定量评估植被的一种有效 *** 。根据不同的研究目的,人们已经提出了几十种植被指数,如比值植被指数RVI,归一化植被指数NDVI,差值环境植被指数DVIEVI,垂直植被指数PVI,土壤调整植被指数SAVI等。
1.2.4.2 在农业中的应用
高光谱遥感在农业中的应用,主要表现在快速、精确地进行作物生长信息的提取、作物长势监测、估算植被(作物)初级生产力与生物量、估算光能利用率和蒸散量及作物品质遥感监测预报,从而相应调整物资的投入量,达到减少浪费,增加产量,改善品质,保护农业资源和环境质量的目的。使用高光谱遥感数据估计作物的农学参数主要有两类 *** :一是通过多元回归 *** 建立光谱数据或由此衍生的植被指数与作物农学参数之间的关系;二是通过作物的红边参数来估计作物的物候性状及其农学参数。
1.2.4.3 在大气和环境方面的应用
高光谱遥感凭借其超高的光谱分辨率可以识别出宽波段遥感无法识别的因大气成分变化而引起的光谱差异,使人们利用高光谱遥感对周围的生态环境情况进行定量分析成为可能。利用高光谱技术可以探测到污染地区的化学物质异样,从而确定污染区域及污染原因;高光谱图像也可用来探测危险环境因素,例如,精确识别危险废矿物,编制特殊蚀变矿物分布图,评价野火的危险等级,识别和探测燃烧区域等。
1.2.4.4 在地质方面的应用
地质矿产调查是高光谱遥感应用中最成功的一个领域。各种矿物和岩石在电磁波谱上显示的诊断性光谱特征可以帮助人们识别不同矿物成分。在地质方面主要利用其探测岩石和矿物的吸收、反射等诊断性特征,从而进行岩石矿物的分类、填图和矿产勘查。
1.2.4.5 在军事上的应用
由于高光谱影像具有丰富的地面信息,可用于精确识别地物种类,在军事侦察、识别伪装方面得到了成功的应用。美国海军设计的超光谱成像仪可在0.4μm~2.5μm光谱范围内提供210 个成像光谱数据,可获得近海环境目标的动态特征,例如海水的透明度、海洋深度、海洋大气能见度、海流、潮汐、海底类型、生物发光、海滩特征、水下危险物、油泄露、大气中水汽总量和次见度卷云等成像数据,对近海作战有十分重要的支撑意义。
摄影测量与遥感学习哪些知识?
摄影测量与遥感技术专业
一、培养目标: 摄影测量与遥感技术专业培养具有诚实守信、爱岗敬业和责任意识,掌握航空摄影测量和遥感技术基本理论和基本知识,具备从事航空摄影测量内、外业生产工作的基本技能和职业能力, 能够胜任航空摄影测量内业成图、外业调绘、外业控制测量、内业加密、工程测量和地形测量等专业岗位一线生产的高级应用性人才。 二、主要课程: 航空摄影测量、数字摄影测量、遥感技术、数字测图技术、地形测量、工程测量、控制测量与GPS卫星定位技术、计算机制图(CAD)、计算机图象处理、地籍测量等。 三、主要实践环节: 航空摄影测量实习、数字摄影测量实习、数字测图技术实习、控制测量与GPS卫星定位技术实习、地形测量实习、地籍测量实习、工程测量实习、计算机制图综合实习、计算机图像处理实习、计算机程序设计综合练习、MicroStation综合练习、顶岗实习、毕业设计。 四、择业方向: 毕业生面向基础测绘、勘测规划设计、国土资源、水利、电力、交通、地矿、测绘仪器销售等行业单位 摄影测量与遥感技术运用前景广阔
日前在我国举行的第21届国际摄影测量与遥感大会技术成就展上,我国展区展示的“影像中国”演示系统吸引了众多观众:站在“影像中国”演示系统屏幕前,戴上特制的眼镜,原来重叠模糊的图像变得清晰而立体。如果利用人机互动进行操作,就可以身临其境地在影像中遨游了。专家介绍,之所以有这种身临其境的感觉,就是因为该系统采用摄影测量与遥感技术,叠加了数字高程模型制作的三维影像。观众利用操纵杆或触摸屏,不仅可以随心所欲地欣赏各地风光,还能在全国范围内查询给定的位置。以影像为基础的摄影测量与遥感,开辟了人类认知地球的崭新视角,提供了认识世界的新 *** 和新手段,实现了测绘业的历史性跨越,并为我国信息化建设筑石铺路。测绘技术飞速发展世界各国都非常重视摄影测量与遥感技术的发展。截至目前,以摄影测量与遥感为代表的现代测绘技术在我国也得到了广泛应用,促进了测绘行业信息化发展步伐,并确立了我国在摄影测量与遥感领域的大国地位。在摄影测量与遥感技术带动下,我国测绘事业发展进入了以数据获取实时化、数据处理自动化、数据传输 *** 化、信息服务社会化为特征的信息化测绘体系建设新阶段。目前,摄影测量与遥感已同大地测量、卫星定位、地图制图与地理信息系统以及工程测量等一起构成了整体的测绘学科与技术体系,使我国的测绘行业在经历了模拟摄影测量、解析摄影测量后,步入数字摄影测量时代。特别是进入21世纪,数字航空传感器的传入让国内测绘业如虎添翼,城市大比例尺航空摄影测量制作的正射影像图得到迅速发展,我国合成孔径雷达技术从二维走向三维,地图产品不再只由线条组成,而是以影像和三维立体形式来表现。测绘技术得到飞速发展。我国自主研制的数码航摄仪不仅达到了世界先进水平,而且已转化为生产力,应用于地形图生产。据介绍,通过数码航摄仪获取的汶川灾区全部图像,分辨率已经达到了0.2至0.3米的高清晰水平。我国自主开发的自动道路测量车,是目前具备世界先进水平的车载移动测量产品,已应用在基础测绘、电子地图、铁路、公路、地理信息系统等领域,在北京奥运会建设工程中也得到大量应用。现代先进测绘技术大大提高了工作效率。比如,过去大地信息的数据采集,要靠测绘工作者的双脚“丈量”土地。如今,卫星和飞机带着摄像机或照相机在空中飞一遍整个测区就可以完成,而且不受地形地貌限制。2007年我国成功发射的嫦娥一号探月卫星,就是利用摄影测量与遥感技术,在完成月球表面的高度测量后,将绘制立体的月球地图,到时候普通人也能一睹月球的真实容貌。此外,采用摄影测量和遥感技术已经构建起1:5万以上的全国基础地理信息数据库、地名数据库和土地利用数据库等,各省区市已经或者正在建立1:1万全省基础地理信息数据库。许多大中城市还建立起更大比例尺基础地理信息数据库,成为构建“数字中国”、“数字省区”、“数字城市”的重要基础,为信息化社会搭建了坚实的平台。助力行业信息化我国和平利用地理空间技术的成就和成效显著,以应用带动发展,促进了我国摄影测量与遥感的广泛应用,成为各行各业的好帮手。近年来,摄影测量与遥感已在测绘、农业、林业、水利、气象、资源环境、城市建设、海洋及防灾减灾等领域广泛应用,其在经济社会发展中发挥了越来越重要的技术支撑和服务作用。在汶川大地震的危急时刻、在灾后重建的关键阶段,摄影测量与遥感成为快速获取灾情的更佳途径。据执行灾区测量任务的四川测绘局同志介绍,灾情发生后,在空中航线被视为“生命线”的危急时刻,空管部门却为执行灾区航空摄影测量任务的测绘工作者“挤”出了一条航线。因为前线指挥救援急需的就是灾后最新影像图,有了图,就如有了“千里眼”,救灾救援才能更精准定位。统计结果也证明,灾后影像图以及地理信息数据在抗震救灾中的不可或缺性。汶川大地震发生后,测绘系统为100多个部门和单位提供了大量测绘保障服务,累计提供灾区地图5.3万张,其中,新加工制作3.1万张;遥感影像等基础地理信息数据约12000GB,满足了有关部门和单位抗震救灾对地图和地理信息的急需。及时为空降空投提供控制点数据近1200点,读取坐标数据3000多个,极大提高了空降空投的准确率。卫星遥感系统广泛服务于工农业生产和社会生活的各方面。据介绍,山东省国土测绘院借助卫星数据,有效地监测省内全部露天和井采图斑信息,解决了以往地面检查难以达到“全面覆盖、准确发现”的问题。专家认为,其技术成果在矿山开采动态监测领域填补了国内空白,整体水平达到了国际先进水平。统计显示,山东省在苍山试点期间,国土部门通过卫星图像数据检查、结合日常巡查,查处违法采矿40多起,越界采矿7处,对20多处无证采矿进行了矿坑回填,取得了良好的矿产资源执法监管效果。摄影测量与遥感为北京奥运会提供了多项服务。开发了应急服务系统,为奥运场馆应急信息管理提供技术支持;为奥运交通运行中心建成了北京奥运服务车辆GPS卫星定位监控调度综合管理系统等。综合水平仍待提高随着我国摄影测量步入全数字阶段和遥感进入高分辨率及三维立体观测阶段,摄影测量与遥感技术应用的广度和深度将日益拓展。中国科学院院士、遥感应用专家徐冠华十分感慨:“如果没有现代摄影测量与遥感,我们就不可能对人类目前所面临的资源、环境、全球变化、可持续发展等问题有像今天这样的认识,有这样的紧迫感。如果没有现代摄影测量与遥感,我们就不可能对重大自然灾害、资源环境等问题作出快速反应。”可以说,摄影测量与遥感作为一种重要的观测技术和利用手段,已深入人心。尽管我国遥感技术取得了巨大成绩,但与发达国家相比还有很大差距。徐冠华指出,还必须努力提高我国遥感技术的综合水平。首先,加强对地观测卫星的整体规划和总体设计。“要充分考虑对地观测卫星的光谱分辨率、空间分辨率和它的运行转道等因素。”在此基础上做出更好的规划,安排好先后顺序,从而把有限资源集成起来,获得更大的成果和更好的效果,满足各方需求。第二,加强各个部门之间的协调。“要更加强调数据共享,这是有效利用卫星遥感数据的关键。这个问题解决不了,必然会造成大量资源和人力浪费。”第三,加强传感器的研制。我国在这方面与发达国家差距比较大。“要加强传感器的研究,增强传感器的工作能力,延长工作寿命,争取在短时间内使中国传感器研制水平有比较大的提高。”此外,在数据处理能力、分析能力等方面也有很多工作要做。把这些工作做好了,中国卫星遥感的潜力将会得到更大的发挥。业内人士预计,未来10年中,遥感技术将步入一个能迅速、及时提供多种对地观测数据的新阶段。随着空间技术发展,尤其是地理信息系统和全球定位系统技术的发展及相互渗透,其应用领域将会更加广泛。
遥感研究需要解决的问题有哪些?
一、遥感的发展
遥感是20世纪60年代发展起来的对地观测综合技术,是应用某种探测仪器,不直接接触探测目标,从远处感测并记录目标的特征信息,经过传输、处理、提取人们感兴趣的信息并分析、揭示出物体的特征性质及其变化的综合性探测技术。
1、
在我国目前的发展现状目前,我国已经独立发展了气象卫星系列、
海洋卫星系列、资源卫星系列和环境与灾害监测预报小卫星星座系统。在我国人口众多、幅员辽阔、可持续发展问题突出的的形势下,高分辨率对地观测信息的广泛应用在解决资源问题、生态环境、地质灾害等众多领域的问题方面已经显示出明显的效果。随着国家各个遥感应用部门形成了高分辨率对地观测卫星数据的应用能力,在各个领域也取得了显著的国民经济效益。
同时,在遥感研究机构方面,国务院许多部委都设立了遥感机构;十几所高校成立了遥感学科或研究室;各省土地局、气象局、环保局等都开展了应用研究;中科院也在基础理论、应用理论方面设有专门的研究机构。同时,各专业学会、国家科委也定期、不定期地召开学术会议探讨学术方面的重要问题。
2、
遥感的应用范围遥感的应用范围十分广泛,涉及到了我们生活中的方方面面,主要包括土地规划方面、环境保护方面、农林方面、地质矿产方面、水体方面的应用等。
遥感在农林方面的应用有作物估产与精细农业、农作物长势监测、森林资源的调查与监测、森林覆盖率调查等。如美国曾利用遥感图像对世界小麦产量做过估算,准确率达90%。遥感在农林业的应用给国家带来了显著收益。
遥感在地质矿产方面的应用以通过遥感图像的研究,确定地区的地质构造和岩石性质,分析构造的运动为任务,服务于工程地质勘探、水文地质勘探和矿产资源调查。在工程勘探与测绘、灾害监测、矿产资源调查与矿区环境监测应用中取得了成果。在我国汶川的5.12地震中,遥感在分析了解震后地质状况、预测余震和救援中都起了巨大的作用。由于遥感可以宏观把握地区性地质灾害分布,形成规模的定量认识,因此在国内外地质灾害中得到了广泛的应用。
遥感在水体方面的应用主要是对水资源与水污染的遥感调查与评价,通过对遥感图像的分析,可以得到水深、水温和水污染等信息。
除此之外,遥感在军事侦察、气象分析等方面也起着举足轻重
的作用。更多方面的应用不一一例举。
二、未来的发展趋势1、“3S”
技术集成化信息技术和传感器技术的飞速发展带来了遥感数据源的极大丰富,每天都有海量的遥感信息,从各种传感器上接收下来。但光有这些遥感信息是不够的,作为信息的提供者,遥感必须与全球定位系统和地理信息系统集成才能得以应用。GPS(全球定位系统),RS(遥感),GIG(地理信息系统)的集成被称为"3S"系统,在其中遥感仅用于实时或准实时的提供目标及其环境的语义和非语义信息,发现地球表面的各种变化,及时的对GIS的空间数据进行更新。因此,遥感将与全球定位系统和地理信息系统更紧的结合,将在各领域发挥更大作用。
2、
动态化遥感已经从对地球资源的静态研究分析过渡到了动态过程监测。目前,遥感的动态化主要基于遥感图像的动态监测,包括土地利用、城市、生态环境的动态监测。利用卫星遥感资料进行动态监测可以克服传统 *** 的缺点,具有客观性、准确性、实时性和高效性等优点,可以节省大量的人力和物力。并且有从动态监测向预测、预报过渡的趋势。
3、
智能化与自动化传感器不仅可以按设定的方式进行扫描,而且可以根据具体要求由地面进行控制编程,使用户可以获得多角度,高时间密度的数据。影像识别和影像知识挖掘的智能化同时遥感数据处理自动化和制图自动化将是遥感发展的必然趋势。
4、
实用化与商业化实用化的体现是随着遥感技术的飞速发展,遥感将投入国民经济各部门进行使用。这样必然会使遥感信息用户范围扩大,因此,除了公益应用型的用户外还存在商业应用型的用户,并且商业应用型用户会随遥感技术的进步不断增长。可以理解为实用化会增加遥感信息的商业价值而吸引更多商业公司的投资,促使遥感向商业化的方向发展。
5、
应用领域广泛化和研究资金的多元化随着应用商业化的不断发展,经济效益明显体现,使遥感已从单纯科研项目转变为蕴涵巨大经济效益的产业(仅汽车导航仪一项就具有上千亿的规模),使得科研资金除国家外又有了大量企业资金、风险资金投入,而商业资金的逐利性必然使得应用研究领域更加广泛,更加深入,整个行业进入良性循环。
三、目前我国遥感应用中存在的几个主要问题
对遥感应用知识的社会普及不足虽然遥感技术研究在我国已开展了几十年,但前期大部分时间是在各科研单位闭门研究,没有真正进人实际应用,因此对此技术知者甚少。这种现象不仅出现在一般老百姓中,就是很多 *** 部门和 *** 官员也是如此,遥感技术在全社会的应用就必然大打折扣。因此,应加强遥感技术应用的宣传(5・12地震救灾中遥感技术应用
关于测绘遥感基础知识和测绘遥感基础知识培训的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。