今天给各位分享gis地图表明污染浓度的知识,其中也会对gis地图表明污染浓度怎么算进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
目录一览:
- 1、Gis到底有哪些应用??
- 2、GIS的概念和应用案例和遥感在自然灾害或环境在这方面的监控
- 3、如果有采样点坐标和污染浓度怎么用gis测定污染范围和土方量
- 4、GIS在环境科学的应用有那些?具体一点的
- 5、怎么用gis将污染程度在地图上表现出来
- 6、GIS在项目应用中的意义
Gis到底有哪些应用??
我也是学GIS的,就自己的理解说一下吧。
GIS重点在空间信息的处理,优势在空间分析。
举例来说吧,现在导航已经逐渐走进我们的生活了,那么导航时位置的获取是GPS,但是真正的导航,在地图上显示你的位置,地图的组织,到目的地最短路径的计算和显示,都是GIS在做。打个比方就是,GPS是眼睛,那么GIS就是大脑,它指挥你处理你获取的信息并作出指示,向哪里走,怎么到目的地。
因而,你可以简单的理解GIS为综合分析和处理空间数据的技术。通常,地图是GIS的表现形式,但是GIS深层是空间信息的处理,所以你从GIS地图上可以获取地理空间信息的直观的印象,更可以通过GIS获取大量的其它信息,如地物与周边地物的关系(主要是拓扑关系,相邻,包含,相离),地物的某一属性的影响范围,如公路对周边多大范围有噪音污染(缓冲区分析)等。GIS让你可以所见即所得,获取地图上的大量信息。而且,由于GIS将属性信息和空间信息相结合,你可以更加直观的理解这些信息。比如,全国人口分布,你可以从一张表上看到各个省份的人口数目,但是那样不容易直观感受,但是用GIS,你可以从地图上分块获取各个省份的人口数目和相对多少,找了张图,不是很好,因为GIS可以在地图上拉出很多柱状,表明人口数,这样,你是不是不仅可以获取人口数,也可以直观看到分布,以及各省人口数呢?呵呵,GIS是很强大的。
添加微信好友, 获取更多信息
复制微信号
再举个例子吧。有一块地,地面不平,坡度不一,土壤有酸碱度,灌溉有条件,土壤含水量等等多种属性,你如何决定土地作何用?如果种地种什么合适?一块地,请一个专家也许花几天也可以出来,但是如果是大量的土地呢?这时,GIS的优势就显示出来了,它可以轻松通过GIS算法处理出来,而且更加科学高效。
相信说了这么多,你应该有些直观感受了。再说说GIS的用途吧。简单的说一下吧。像国土规划,这么大的数据量,还有众多的属性信息,如房屋权属,用途,何时建立,属于哪个行政单位等等,出了GIS,还有谁这么厉害呢?CAD在图形方面可以,属性不行的。制图就不说了,看来你是用过的。交通方面,就说这个最短路径就行,你到某地如何走用时最少或者最近?GIS来帮你!旅游方面类似,如何最短的路径游玩最多的地方?GIS可以帮你。公共安全方面,消防站建在哪里可以覆盖更大面积,同时不与其它的消防站覆盖面相重合?同时到各个地方路径比较短?GIS可以做。。。。。。等等,GIS用途很广的,你关注一下,会发现很多地方都用到了GIS。
至于WebGIS,简单理解是因为地理数据的分布存储以及应用,还有 *** 化的原因。像Google地图和百度地图不就是吗?
呵呵,说了这么多了,希望对你有帮助。相信GIS会越来越广泛的应用于我们身边,使我们的生活更加方便。
以上都是自己的理解和体会,有不对的地方还请大家指出,谢了!
GIS的概念和应用案例和遥感在自然灾害或环境在这方面的监控
题目太大了,我写一点我知道的吧。
地理信息系统(Geographic Information System ,即GIS )——一门集计算机科学、信息学、地理学等多门科学为一体的新兴学科,它是在计算机软件和硬件支持下,运用系统工程和信息科学的理论,科学管理和综合分析具有空间内涵的地理数据,以提供对规划、管理、决策和研究所需信息的空间信息系统。
应用案例的话,mapgis或者arcgis都是很好的基于gis原理的图像应用软件。
遥感在自然灾害方面主要通过高光谱或者来探测危险环境因素。
例如:编制酸性矿物分布图,特殊蚀变矿物分布图,评价野火分布等级等。还可用于研究废弃矿环境的恢复问题。
在水体的污染,遥感应用较好的方面有:
1.水体污染浓度大使水体显著变色并与背景水色差异较大时,可在可见光波段图像上识别。
2.水体富营养化,可在近红外波段影像上被识别。
3.水体受热污染,可在热红外波段影像被识别。
4.水上被油溢污染,可使紫外波段和近红外波段的反射率增高,有可能被探测。
如果有采样点坐标和污染浓度怎么用gis测定污染范围和土方量
土壤环境监测技术规范
4采样准备
4.1组织准备
由具有野外调查经验且掌握土壤采样技术规程的专业技术人员组成采样组,采样前组织学习有关技术文件,了解监测技术规范。
4.2资料收集
收集包括监测区域的交通图、土壤图、地质图、大比例尺地形图等资料,供制作采样工作图和标注采样点位用。
收集包括监测区域土类、成土母质等土壤信息资料。
收集工程建设或生产过程对土壤造成影响的环境研究资料。
收集造成土壤污染事故的主要污染物的毒性、稳定性以及如何消除等资料。
收集土壤历史资料和相应的法律(法规)。
收集监测区域工农业生产及排污、污灌、化肥农药施用情况资料。
收集监测区域气候资料(温度、降水量和蒸发量)、水文资料。
收集监测区域遥感与土壤利用及其演变过程方面的资料等。
4.3现场调查
现场踏勘,将调查得到的信息进行整理和利用,丰富采样工作图的内容。
4.4采样器具准备
4.4.1工具类:铁锹、铁铲、圆状取土钻、螺旋取土钻、竹片以及适合特殊采样要求的工具等。
4.4.2器材类:GPS、罗盘、照相机、胶卷、卷尺、铝盒、样品袋、样品箱等。
4.4.3文具类:样品标签、采样记录表、铅笔、资料夹等。
4.4.4安全防护用品:工作服、工作鞋、安全帽、药品箱等。
4.4.5采样用车辆
4.5监测项目与频次
监测项目分常规项目、特定项目和选测项目;监测频次与其相应。
常规项目:原则上为GB 15618《土壤环境质量标准》中所要求控制的污染物。
特定项目:GB 15618《土壤环境质量标准》中未要求控制的污染物,但根据当地环境污染状况,确认在土壤中积累较多、对环境危害较大、影响范围广、毒性较强的污染物,或者污染事故对土壤环境造成严重不良影响的物质,具体项目由各地自行确定。
选测项目:一般包括新纳入的在土壤中积累较少的污染物、由于环境污染导致土壤性状发生改变的土壤性状指标以及生态环境指标等,由各地自行选择测定。
土壤监测项目与监测频次见表4-1。监测频次原则上按表4-1执行,常规项目可按当地实际适当降低监测频次,但不可低于5年一次,选测项目可按当地实际适当提高监测频次。
表4-1 土壤监测项目与监测频次
项目类别 监测项目 监测频次
常规项目 基本项目 pH、阳离子交换量 每年一次
农田在夏收或秋收后采样
重点项目 镉、铬、汞、砷、铅、铜、锌、镍
六六六、滴滴涕
特定项目(污染事故) 特征项目 及时采样,根据污染物变化趋势决定监测频次
选测项目 影响产量项目 全盐量、硼、氟、氮、磷、钾等
每年监测一次
农田在夏收或秋收后采样
污水灌溉项目 氰化物、六价铬、挥发酚、烷基汞、苯并[a]芘、有机质、硫化物、石油类等
POPs与高毒类农药 苯、挥发性卤代烃、有机磷农药、PCB、PAH等
其他项目 结合态铝(酸雨区)、硒、钒、氧化稀土总量、钼、铁、锰、镁、钙、钠、铝、硅、放射性比活度等
5布点与样品数容量
5.1“随机”和“等量”原则
样品是由总体中随机采集的一些个体所组成,个体之间存在变异,因此样品与总体之间,既存在同质的“亲缘”关系,样品可作为总体的代表,但同时也存在着一定程度的异质性的,差异愈小,样品的代表性愈好;反之亦然。为了达到采集的监测样品具有好的代表性,必须避免一切主观因素,使组成总体的个体有同样的机会被选入样品,即组成样品的个体应当是随机地取自总体。另一方面,在一组需要相互之间进行比较的样品应当有同样的个体组成,否则样本大的个体所组成的样品,其代表性会大于样本少的个体组成的样品。所以“随机”和“等量”是决定样品具有同等代表性的重要条件。
5.2布点 ***
5.2.1简单随机
将监测单元分成网格,每个网格编上号码,决定采样点样品数后,随机抽取规定的样品数的样品,其样本号码对应的网格号,即为采样点。随机数的获得可以利用掷骰子、抽签、查随机数表的 *** 。关于随机数骰子的使用 *** 可见GB10111《利用随机数骰子进行随机抽样的办法》。简单随机布点是一种完全不带主观限制条件的布点 *** 。
5.2.2分块随机
根据收集的资料,如果监测区域内的土壤有明显的几种类型,则可将区域分成几块,每块内污染物较均匀,块间的差异较明显。将每块作为一个监测单元,在每个监测单元内再随机布点。在正确分块的前提下,分块布点的代表性比简单随机布点好,如果分块不正确,分块布点的效果可能会适得其反。
5.2.3系统随机
将监测区域分成面积相等的几部分(网格划分),每网格内布设一采样点,这种布点称为系统随机布点。如果区域内土壤污染物含量变化较大,系统随机布点比简单随机布点所采样品的代表性要好。
图5-1 布点方式示意图
5.3基础样品数量
5.3.1由均方差和绝对偏差计算样品数
用下列公式可计算所需的样品数:
N=t2s2/D2
式中:N为样品数;
t为选定置信水平(土壤环境监测一般选定为95%)一定自由度下的t值(附录A);
s2为均方差,可从先前的其它研究或者从极差R(s2=(R/4)2)估计;
D为可接受的绝对偏差。
示例:
某地土壤多氯联苯(PCB)的浓度范围0~13mg/kg,若95%置信度时平均值与真值的绝对偏差为1.5 mg/kg,s为3.25 mg/kg,初选自由度为10,则
N =(2.23)2(3.25)2/(1.5)2 =23
因为23比初选的10大得多,重新选择自由度查t值计算得:
N =(2.069)2(3.25)2/(1.5)2 =20
20个土壤样品数较大,原因是其土壤PCB含量分布不均匀(0~13 mg/kg),要降低采样的样品数,就得牺牲监测结果的置信度(如从95%降低到90%),或放宽监测结果的置信距(如从1.5 mg/kg增加到2.0 mg/kg)。
5.3.2由变异系数和相对偏差计算样品数
N=t2s2/D2可变为:
N=t2CV2/m2
式中:N为样品数;
t为选定置信水平(土壤环境监测一般选定为95%)一定自由度下的t值(附录A);
CV为变异系数(%),可从先前的其它研究资料中估计;
m为可接受的相对偏差(%),土壤环境监测一般限定为20%~30% 。
没有历史资料的地区、土壤变异程度不太大的地区,一般CV可用10%~30%粗略估计,有效磷和有效钾变异系数CV可取50%。
5.4布点数量
土壤监测的布点数量要满足样本容量的基本要求,即上述由均方差和绝对偏差、变异系数和相对偏差计算样品数是样品数的下限数值,实际工作中土壤布点数量还要根据调查目的、调查精度和调查区域环境状况等因素确定。
一般要求每个监测单元最少设3个点。
区域土壤环境调查按调查的精度不同可从2.5km、5km、10km、20km、40km中选择网距网格布点,区域内的网格结点数即为土壤采样点数量。
农田采集混合样的样点数量见“6.2.2.2混合样采集”。
建设项目采样点数量见“6.3建设项目土壤环境评价监测采样”。
城市土壤采样点数量见“6.4城市土壤采样”。
土壤污染事故采样点数量见“6.5污染事故监测土壤采样”。
6样品采集
样品采集一般按三个阶段进行:
前期采样:根据背景资料与现场考察结果,采集一定数量的样品分析测定,用于初步验证污染物空间分异性和判断土壤污染程度,为制定监测方案(选择布点方式和确定监测项目及样品数量)提供依据,前期采样可与现场调查同时进行。
正式采样:按照监测方案,实施现场采样。
补充采样:正式采样测试后,发现布设的样点没有满足总体设计需要,则要进行增设采样点补充采样。
面积较小的土壤污染调查和突发性土壤污染事故调查可直接采样。
6.1区域环境背景土壤采样
6.1.1采样单元
采样单元的划分,全国土壤环境背景值监测一般以土类为主,省、自治区、直辖市级的土壤环境背景值监测以土类和成土母质母岩类型为主,省级以下或条件许可或特别工作需要的土壤环境背景值监测可划分到亚类或土属。
6.1.2样品数量
各采样单元中的样品数量应符合“5.3基础样品数量”要求。
6.1.3网格布点
网格间距L按下式计算:
L=(A/N)1/2
式中:L为网格间距;
A为采样单元面积;
N为采样点数(同“5.3样品数量”)。
A和L的量纲要相匹配,如A的单位是km2则L的单位就为km。根据实际情况可适当减小网格间距,适当调整网格的起始经纬度,避开过多网格落在道路或河流上,使样品更具代表性。
6.1.4野外选点
首先采样点的自然景观应符合土壤环境背景值研究的要求。采样点选在被采土壤类型特征明显的地方,地形相对平坦、稳定、植被良好的地点;坡脚、洼地等具有从属景观特征的地点不设采样点;城镇、住宅、道路、沟渠、粪坑、坟墓附近等处人为干扰大,失去土壤的代表性,不宜设采样点,采样点离铁路、公路至少300m以上;采样点以剖面发育完整、层次较清楚、无侵入体为准,不在水土流失严重或表土被破坏处设采样点;选择不施或少施化肥、农药的地块作为采样点,以使样品点尽可能少受人为活动的影响;不在多种土类、多种母质母岩交错分布、面积较小的边缘地区布设采样点。
6.1.5采样
采样点可采表层样或土壤剖面。一般监测采集表层土,采样深度0~20cm,特殊要求的监测(土壤背景、环评、污染事故等)必要时选择部分采样点采集剖面样品。剖面的规格一般为长1.5m,宽0.8m,深1.2m。挖掘土壤剖面要使观察面向阳,表土和底土分两侧放置。
一般每个剖面采集A、B、C三层土样。地下水位较高时,剖面挖至地下水出露时为止;山地丘陵土层较薄时,剖面挖至风化层。
对B层发育不完整(不发育)的山地土壤,只采A、C两层;
干旱地区剖面发育不完善的土壤,在表层5~20 cm、心土层50 cm、底土层100 cm左右采样。
水稻土按照A耕作层、P犁底层、C母质层(或G潜育层、W潴育层)分层采样(图6-1),对P层太薄的剖面,只采A、C两层(或A、G层或A、W层)。
GIS在环境科学的应用有那些?具体一点的
以环境监测为例吧:
城市环境的演变是一个动态的过程,城市环境动态监测的实现,有赖于信息的适时更新和对信息的空间分析与综合处理。地理信息系统具有强大的空间分析和数据处理功能,充分利用GIS的功能模块结合选定的环境监测模型可以对多源环境信息进行处理,从中发现环境演变的动态规律,通过不同时段环境信息的对比和综合分析,辅助决策。其关键在于建立科学的监测模型,对信息进行有效的综合处理,从而实现对环境的综合动态监测。包括大气污染的监测,水体污染监测、生态环境监测,环境灾害监测等。GIS强大的专题制图功能可将环境的变化情况、规律通过直观的图件资料予以显示。
(1)大气环境的动态监测与分析。大气环境是环境问题的一个重要因素,尤其是人口密集、工业企业集中的城市大气环境问题显得尤为突出。目前很多国家和地区都在为改善和恢复大气环境做着积极的努力。在进行这项工作时,首先要了解大气环境的特点。之一,它的空间尺度大,人类赖以生存的大气圈有上百公里的厚度;第二,空气在自然环境中有着更好的流动性,地面是其不可逾越的固体边界。因此大气环境的动态监测与分析工作最适合用GIS技术进行研究。应用GIS建立城市大气污染的管理系统时,将基础数据进行如下分类:属性数据,如污染物排放量、人口状况、工业结构等;地理(空间)数据,如污染源的分布、城市现状平面图等。把数据库分为基本型和导出型,应该既更新基本型数据库,又更新导出型数据库。利用GIS的空间图形图像的显示、分析功能,可以获得各污染物浓度分布图,了解各污染物的空间分布及超标情况。致力于大气环境问题的科研人员已经在这些方面取得了长足的进展,国内外都有成功的实例。比如,欧洲的RAINS模式[2]就是一个跨国界的SO2排放量计算机管理系统,我国“七五”环保项目中“国家大气环境信息系统”[6]。大家熟知的大气层的臭氧层“黑洞”就是通过GIS和遥感技术发现的。
(2)水资源环境监测。随着工业的发展,水资源也受到了不同程度的污染。此外人口的急剧增长及城市的发展,许多城市出现了用水紧张的局面。因此,加强对水资源的监测和管理迫在眉睫。水资源环境的一个特点是空间信息量大,而对空间信息的管理与分析正是GIS的优势,这样GIS便成了一个强有力的水资源管理工具,使水资源的管理工作由传统模式进入了现代化的动态管理模式。
GIS应用于水资源数据的监测管理,主要是对水质数据、供水部门数据及遥感数据进行管理与分析等。GIS与计算机水域模型(watershedmodel)的结合已成为动态评估城市水资源环境的强有力工具。如Adamus和Bergman采用GIS与筛选函数分析水域内无点污染源的荷载分布,Richard和Host应用GIS与相关函数分析河流生物与上游土地应用及河流形状的关系[6],中国环境科学院郑丙辉等应用GIS定量分析昆明市松华坝水库的流域面源污染[7]。用GIS管理水资源数据,使得数据资源共享具有很大潜力,增强了数据管理与分析的可视性,将数据管理的水平又提高到一个新的高度。Hudak等人在利用GIS技术对地下水监测 *** 进行的设计中,对所选研究区域进行详细的场地监测和分析,从而有利于管理地表和地下废物设施,及时发现潜在污染源,加强对水源井的保护,还能为填理场选址提供决策支持[3]。上海市环境管理部门于20世纪80年代末开始GIS的应用研究,并建立了黄浦江流域水环境地理信息系统,系统具有动态监测显示、水污染过程模拟及取水口水环境管理功能,并可对水质作出快速预测分析和预报(郑丙辉,刘宁。GIS支持下的流域面源污染研究。中国地理信息系统协会首届年会论文集,1995)。
(3)生态环境宏观监测。我国改革开放以来,经济高速增长,然而资源的过度开发利用,对生态环境造成了严重的破坏。为了实现我国经济可持续发展战略,必须了解生态环境现状,解决主要生态环境问题,以保障有关决策部门在资源开发利用和保护生态环境方面做出合理的、科学的宏观决策。由于生态环境信息具有容量大、层次多、内容广、关系复杂、空间分布和动态变化的特点,以往所做的大都是一些常规的、单项的生态环境和资源调查,而且监测结果的技术质量较低[8]。
第2卷第2期冯文博等GIS在环境工程中的应用17在GIS技术正逐渐走向成熟的今天,利用GIS软件支持,可以更精确、更直观地对空间数据进行划分,把生态环境的属性信息和空间信息按空间分布特点,输入计算机,来建立地理信息系统及生态监测数据库,以便有效地存储和管理数据,快速、准确地进行信息的查询、检索、更新,促使数据的全面综合处理和迭加分析,对生态环境的发展态势做出科学预测[9,10]。GIS的强大制图功能,可以使用户轻松获得定位准确、内容详的实专题图。生态环境信息系统的建立,不仅为将来的工作提供重要的本底数据,还可与其他部门的有关信息系统以及国际相关系统联网,形成统一的生态环境信息 *** 。内蒙古环境监测中心站利用遥感和环境信息技术对内蒙古伊盟地区进行首次生态环境调查,并取得了可喜调查成果,为建立自治区生态环境动态监测信息系统奠定了基础[11]。
(4)环境灾害监测与评估。灾害的发生大都是突发性的,其结果是对环境造成重大污染,经济上造成巨大损失,对居民的身体健康及生命安全造成巨大威胁,其危害制约着生态平衡及经济、社会的发展。一旦灾害发生,必须及时准确的制定出应急对策,在有限的资源条件下,更大限度的降低灾害损失。由于GIS具有交互定位和逻辑查询以及广泛的关系数据库连接能力,所以非常适合用于环境灾害监测与评估。对于特大火灾,消防部门可以使用GIS完成火灾事件分析、绘制火灾现场图、显示消火栓分布图、道路状况和资源分布,从而进行紧急调度和路径优化。灾后可很快进行环境质量追踪调查、评估,根据新的环保监测数据,迅速得出一定范围内大气污染的等值线图,以及对居民、生态的影响。GIS可以提供有关洪涝灾害的历史、自然环境和社会经济现状的背景数据;可以对洪涝灾害的可能性、空间分布、危险程度等进行综合的分析、评价、模拟分析和趋势预测研究;可以辅助防灾、减灾决策分析,提供灾害快速评估与计算机辅助决策。中国测绘科学院李紫薇等建立的一套基于“4D”的洪涝灾害遥感监测评估与保险核损技术系统也已经在岳阳地区投入了运行。水利部陈曦川等应用GIS *** 分析技术,模拟分析出北京地区小清河滞洪区疏散居民更佳撤退路径,减少了居民伤亡和财产损失,为防洪减灾中提供最有效的决策依据。
地理信息系统可不断更新、储存新的信息,维持数据库的有效性和现势性。若将GIS与RS(遥感技术)相结合,可以实现实时动态监测模拟。在灾害发展过程和灾害消除后,灾害发生的规模、速度,灾害制止后是否有回迹现象等都可用遥感进行监测。尤其是对交通不便、人迹稀少的地方更为方便(李紫薇,毛可标,龚循平,等:《基于“4D”的理大洪涝灾害保险核损技术系统的建立》,第十届全国遥感技术学术交流会论文集,1997)。
怎么用gis将污染程度在地图上表现出来
如果有污染的点数据的话,可以利用插值,来分析污染点周围的浓度。
如满意,请采纳
GIS在项目应用中的意义
GIS技术在环境保护中的应用
随着我国环境信息化的快速发展和计算机新技术在环境保护领域的广泛应用,环境信息系统在环境保护管理和决策工作中发挥着越来越重要的作用。而地理信息系统技术的出现为环境保护工作迈向信息化、现代化提供了技术支持。
目前,全国27个省级环保局及一百多个城市环保部门都已购置了ESRI公司的ARCGIS、ARCVIEW地理信息系统平台软件和相应的硬件设施,大部分省市已经建立环境基础数据库,在GIS平台上开发了城市环境地理信息系统、重点流域水资源管理、环境污染应急预警预报系统等,取得了显著的成效。
2.1应用GIS制作环境专题图
环境制图是环境科学研究的基本工具和手段。与传统的、周期长、更新慢的手工制图方式相比,利用GIS建立起地图数据库,可以达到一次投入、多次产出的效果。它不仅可以用户输出全要素地形图,而且可以根据用户需要分层输出各种专题图,如污染源分布图、大气质量功能区划图等等。GIS的制图 *** 比传统的人工绘图 *** 要灵活得多,在基础电子地图上,通过加入相关的专题数据就可迅速制作出各种高质量的环境专题地图。可以根据实际需要从符号和颜色库中选择图件,使之更好地突出专题效果和特性。
2.2应用GIS建立各种环境地理信息系统
各级环保部门在日常管理业务中,需要采集和处理大量的、种类繁多的环境信息。而这些环境信息85%以上与空间位置有关。GIS的强大功能之一是它的空间数据的采集、编辑、处理功能和对空间数据的管理能力。使用GIS,可以建立各种环境空间数据库。例如:污染源空间信息数据库(包括工业、农业、交通等污染源数量、属性和污染源发生的地域范围)、环境质量信息数据库(包括空气、水、噪声等),GIS能够把各种环境信息与其地理位置结合起来进行综合分析与管理,以实现空间数据的输入、查询、分析、输出和管理的可视化。例如,基于GIS平台,厦门市建立了城市环境空间数据库和污染源监测属性数据库,开发了 *** 化城市环境质量地理信息系统,该系统涵盖了大气、地表水、声学环境的监测信息,以分布图、专题图、三维模型等形式,生动直观地反映环境质量状况。由于采用了因特网的GIS开发技术,该系统可以在Internet/Intranet上运行。
2.3 GIS应用于环境监测
在环境监测过程中,利用GIS技术可对实时采集的数据进行存储、处理、显示、分析,实现为环境决策提供辅助手段的目的。如广东省以东深流域自然环境地理信息为基础,对东深流域的监测数据进行存储处理,利用GIS技术开发了东深流域水环境管理信息。该系统直观显示和分析东深流域水环境现状、污染源分布、水环境质量评价,追踪污染物来源。可结合数字地图查询历年监测数据及各种统计数据,进行空间分析(如缓冲区查询与分析)、辅助决策(容量计算及污染状况的预测)为流域水环境的科学化管理和决策提供了先进的科学手段。
2.4 GIS应用于自然生态现状分析
在进行自然生态现状分析过程中,利用GIS可以比较精确地计算水土流失、荒漠化、森林砍伐面积等,客观地评价生态破坏程度和波及的范围,为各级 *** 进行生态环境综合治理提供科学依据。国家环保总局把GIS技术与遥感技术相结合,对我国西部12省的生态环境现状进行调查,得到了西部地区生态环境的空间分布与空间统计状况、生态环境质量状况和生态环境变化的空间规律特点,为该地区经济的可持续发展与资源环境的可持续利用提供了科学依据。青海省遥感中心将“3S”技术运用到青海湖环湖重点区域调查上,快速查清了该区域土地利用、土地覆盖现状,建立了生态环境数据库和生态环境评价指标体系,为 *** 规划决策、资源开发、环境保护提供了宝贵资料。
2.5 GIS应用于环境应急预警预报
建立重大环境污染事故区域预警系统,能够对事故风险源的地理位置及其属性、事故敏感区域位置及其属性进行管理,提供污染事故的大气、河流污染扩散的模拟过程和应急方案。例如,大连市的“重大污染事故区域预警系统”把重大污染事故的多种预测模型与GIS技术相结合,当某一风险源发生事故时提供应急措施、报警信息和救援信息,为重大污染事故应急指挥奠定了基础。上海市应用GIS、RS与GPS技术开发了环保应急热线系统,该系统采用GIS技术进行污染源搜索和定位;将GIS与GPS结合起来,用于出警指挥和导航;用RS技术获取地面信息,解决了GIS基础底图动态更新问题。通过“3S”技术的综合应用,更好地发挥了GIS在环保执法和应急事件中的作用。
2.6 GIS应用于环境质量评价和环境影响评价
由于GIS能够集成管理与场地密切相关的环境数据,因而也是综合分析评价的有力工具。环境影响评价是对所有的改、扩、建项目可能产生的环境影响进行预测评价,并提出防止和减缓这种影响的对策与措施。利用GIS的空间分析功能,可以综合性地分析建设项目各种数据,帮助确立环境影响评价模型。由于GIS系统具有层的结构,可将不同的环境影响进行计算并叠加。深圳市环境保护研究所已利用GIS技术进行编制环境影响评价报告书和制图。
在区域环境质量现状评价工作中,可将地理信息与大气、土壤、水、噪声等环境要素的监测数据结合在一起,利用GIS软件的空间分析模块,对整个区域的环境质量现状进行客观、全面的评价,以反映出区域中受污染的程度以及空间分布情况。如通过叠加分析,可以提取该区域内大气污染布图、噪声分布图;通过缓冲区分析,可显示污染源影响范围等。
2.7 GIS应用于水环境管理
水环境信息具有明显的空间属性和层次属性,利用GIS可以更加明确地揭示不同区域的水环境状况,反映水体环境质量在空间上的变化趋势。可以更加直观地反映如污染源、排污口、监测断面等环境要素的空间分布。利用GIS还可以进行污染源预测、水质预测、水环境容量计算、污染物削减量的分配等,以表格和图形的方式为水环境管理决策提供多方位、多形式的支持。目前,全国各省环保局正在使用GIS软件进行各省水环境功能区划汇总工作,在此基础上,进一步开发水环境功能区管理信息系统,实现水环境数据查询、水质评价、统计分析、水质预测等功能,将各种水环境信息以可视化的方式表达,对水环境的科学管理将具有非常重要的意义。
gis地图表明污染浓度的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于gis地图表明污染浓度怎么算、gis地图表明污染浓度的信息别忘了在本站进行查找喔。