gis地图校正功能,gis地图变形怎么纠正

2024-05-14 GIS 45
A⁺AA⁻

本篇文章给大家谈谈gis地图校正功能,以及gis地图变形怎么纠正对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

目录一览:

arcgis中图片跟地形图怎么校正?

扫描地形图配准的常用步骤:

在配准前,先在ArcGIS Toolbox下的Data management tool下的projections and transformations进行投影系统的定义。1:50000的地形图,是基于北京1954坐标系,6度分带的高斯克吕格投影。在地形图方里网上可以看出本图幅位于哪个分度带。假设是19度带,因此我们要选择的是Beijing 1954 GK Zone 19.prj。同时目录里面还有一个Beijing 1954 GK Zone 19N.prj,这个是用于没有分度带号的。而我们的图幅是包括分度带号。

(1)打开 ArcMap,增加 Georeferencing 工具条。

(2)把需要进行纠正的扫描地形图添加到 ArcMap 中, Georeferencing 工具被激活。

微信号:MeetyXiao
添加微信好友, 获取更多信息
复制微信号

(3)在配准中我们需要知道一些特殊点的坐标,即控制点。可以是经纬线网格的交点、公里网格的交点或者一些典型地物的坐标,我们可以从图中均匀的取几个点。如果我们知道这些点在我们矢量坐标系内坐标,则用以下 *** 输入点的坐标值。

(4)在Transformation里选择进行空间变换时所采用的 *** 。首先将 Georeferencing 工具条的 Georeferencing 菜单下 Auto Adjust 不选择。

(5)在 Georeferencing 工具条上,点击 Add Control Points 按x—x按钮。

(6)使用该工具在扫描图上精确到找一个控制点点击,然后鼠标右击输入该点实际的坐标位置。要注意的问题是,地形图上的方里网坐标为公里,而需要输入的应该是米。所以要在方里网对应坐标后面加000。如地形图上读出一个交点为(19387, 3420),19387的19为分带号,也要一并输入,那么这个点应该输入(19387000, 3420000)。

(7)用相同的 *** ,在影像上增加多个控制点,输入它们的实际坐标。一般在实际中,不少于7个,这些点应该能够均匀分布。特殊点一般是作为参考地图中多年或变化不大的坐标点,比如路口,河流交汇处,标志性建筑等。还应该增加一个规则:理论上控制点越多越均匀,配准效果越好,但是主要需要参考的是rms的值,rms小于一个象元的1/2为好,多加入控制点,RMS就越大说明其中某个控制点误差大或有错误,你可以查出来删除或修正.结束时,点击Georeferencing工具条上的View Link Table按钮。在这个过程中,ArcGIS通过计算控制点做一个多项式转换,应用最小二乘适宜使输入位置近似到输出位置。更佳多项式转换生成两个公式——一个是为输入位置(x,y)计算其输出的x坐标、一个是计算输出的y坐标。最小二乘适宜是从一个应用到所有点的一般公式得到的。当这个公式应用到一个控制点,会返回一个误差。误差是从点位置与到点位置之间的差异。使用更多质量等同的控制点,就能更精确地用多项式把输入数据转换到输出的坐标。但是,更多的连接不等同于更好的配准。理想情况下,连接应该分散在影像上,至少每个角上有一个点。转换的精确程度是通过比较真实的地图坐标位置与栅格中转换的位置来测量的。如果不满意,还可以对局部控制点进行调整,点中后直接手动即可。

(8)增加所有控制点后,在 Georeferencing 菜单下,点击 Update Display。

(9)更新后,就变成真实的坐标。

(10)在 Georeferencing 菜单下,点击 Rectify,将校准后的影像另存。

gis地图校正功能,gis地图变形怎么纠正

如何使用Mapgis进行误差校正

建议在误差校正之前,备份数据。

误差校正的基本原理为:通过系统采集实际控制点和理论控制点的坐标值,在实际值和理论值之间建立一种对应关系,并计算出每个实际控制点的误差系数,从而可根据所得到的误差系数来校正每个实际控制点周围的点、线、面数据,最终达到校正事整个点、线、面文件的目的。

以方里网为校正控制点。文件“方里网.wt”中存贮了实际控制点,文件“标准.wl”中方里网的交点即是理论控制点,MAPGIS能自动采集点文件中所有的点图元和线文件中线的交点(包括T型交点和“十”字交点)。

步骤:

1 数据准备。将用来误差校正的控制点存贮在单独的一个文件中

2 打开需要校正的文件

3 新建控制点文件

4 菜单“控制点”选择“设置控制点参数”,选“实际值”

5 “选择采集文件”,选控实际制点所在的文件

6 “自动采集控制点”

7 菜单“控制点”选择“设置控制点参数”,选“理论值”

8 “选择采集文件”,选存贮理论控制点的文件

9 “自动采集控制点”,定义匹配 ***

10 保存控制点

11 “编辑校正控制点”窗口中选择误差校正 *** ,点击“校正”选择要校正的文件,选“确定”。

注意:控制点采集过程中,实际值和理论值必须一一对应。

若使用“数据校正”菜单下的“成批文件校正”,则被校正的文件必须处于关闭状态。

MapGIS 6.7 里如何进行标准图幅的校正?

打开图像分析模块,在文件菜单下面打开待校正的影像。对于标准分幅图,通常采用DRG生产的 *** 校正。共三大步骤:

一、图幅生成控制点,此步骤里共3小步骤。1、输入图幅信息(输入该图幅的图幅号)2、依次确定四个内图廓点。3、生成GCP。

二、顺序修改控制点。将每个控制点校正到正确的位置。点击左键校正,按空格键表示确定。

三、逐格网校正。保存校正后的影像。

GIS方面:如何对已经数字化的地图进行配准?

当前GIS的功能进展2006/12/31 11:35 A.M. 地理信息系统GIS(Geographic Information System)是近20年来发展起来的一门综合性的技术,它涉及到地理学、测绘学、计算机科学与技术等学科。它的概念和基础是地理和测绘,它的技术支撑是计算机技术,它的应用领域是地理、规划与管理等许多行业和部门。随着信息技术尤其是计算机技术的快速发展、数字地球的提出与实施,GIS应用程度的不断深入和应用范围的逐渐扩大,正处于急剧变化与发展之中。

1.1 空间信息的获取与处理

空间信息的获取技术包括:野外全站仪测量、GPS测量、地图扫描数字化、数字摄影测量、从遥感影像进行目标测量等。野外全站仪测量、GPS测量的软件已基本普及。

地图扫描数字化技术及转化成矢量数据库的技术日趋成熟并已商品化,如ESRI公司的ArcScan。目前的技术大多采用交互和自动相结合,在自动消除噪音和色斑后,可自动跟踪单线和多边形边界,并自动识别断点、虚线、符号线,自动角度取直,交互时可以进行栅格-矢量一体化编辑。虽然扫描数字化大大提高了图形数据输入的效率和精度,但数字化后的编辑和属性数据的输入依然很繁重。

GPS集成到GIS中和GIS用于野外,使实时获取野外数据取得重大进展。遥感影像正在被用来作为一种基本地图,使之成为GIS最重要的一层。

用数字摄影测量 *** 自动获取DEM、数字正射影像,人工交互获取矢量线划数据的技术已得到广泛使用。在我国,该项技术处于世界领先水平,仪器设备和软件出口,而且承担国外的数据采集任务。

用遥感制作数字正射影像,并用交互式 *** 进行目标提取的技术也已基本成熟,已生产出大量遥感数字正射影像数据。

在空间信息获取方面,剩下的是地物目标的自动识别和自动测量问题,包括扫描地图的要素识别、数字摄影测量和遥感目标的自动提取。这是一个需要长期研究的课题,短期内难以取得突破。

从技术角度讲,空间数据处理的 *** 与技术已基本成熟,但是仍缺少效率高、自动化程度好的空间数据处理专用软件。

空间数据获取与处理的另一个发展趋势是 *** 化空间数据生产。它是指空间数据采集与处理工作基于一个局域网环境,并用一个 *** 数据生产管理软件进行生产调度、监控和质量控制,以提高空间数据的生产效率和保证数据的安全。

随着新型传感器的发展,空间数据信息源的获取设备与技术正处于一个快速发展时期,激光扫描雷达、高分辨率数字摄影测量相机、红外相机、干涉雷达等一批新型航测遥感设备,将使我们获取的空间信息更加丰富。

1.2 空间数据存储和检索

GIS空间数据管理已经走出了文件管理的模式。最初的GIS软件一般采用文件 *** 管理矢量图形数据,利用关系数据库管理系统管理属性数据。目前主要的GIS软件都采用了商用关系数据库管理系统同时管理图形和属性数据。如国外的ARC/INFO、GEOMEDIA,国内的GEOSTAR、MAPGIS、SUPERMAP等。

在数据查询和访问上,采用标准的SQL命令来访问和操作数据(包括对数据的增、删、改)。在提高查询速度上,大多引进四叉树和R树等空间索引技术。

1.3 数据处理和分析

GIS在这一方面的问题是,精通分析与模型化技术的数学专家对GIS了解不多,而GIS的开发者往往对空间数据的分析、模型化和空间统计方面知之甚少。在标准的商业系统中,仍然没有基本的通用的空间分析程序,而且也没有基本的通用模型化工具。值得注意的是,GIS厂商正在他们的产品中包含栅格数据处理功能,并将其作为单独的模块提供给用户,如MapInfo公司的Vertical Mapper。

1.4 数据输出

GIS在数据输出方面最令人兴奋的进展在于随着Internet和WWW技术的应用,使GIS的地理信息和地图数据输出跨越了时间和空间。任何用户可以在任何时间任何地点通过互联网去访问Web服务器上安装的GIS,可以在自己定制的界面上获得地图信息、制作专题地图、进行地理分析等。应该说已经商品化的WebGIS都还处于初级阶段,WebGIS提供的查询和分析功能还不能满足专业应用的需要。但WebGIS的出现已经开始改变GIS传统的数据输出和地图发布的方式,为地理信息的高度社会化共享提供了可能。

2.1 WebGIS的发展趋势

WebGIS是以现有的Internet/Intranet为架构基础的 *** 互操作应用系统,它可利用Internet在Web上发布空间数据,为用户提供空间数据浏览、查询和分析的功能。一方面,WebGIS可为公众提供交通、旅游、餐饮、娱乐、房地产、购物等与空间信息有关的在线信息服务;另一方面,WebGIS可为基于Intranet的企业内部业务管理提供服务,如帮助企业进行设备管理、线路管理以及安全监控管理,等等。WebGIS的广泛应用,使得它已经成为目前国际GIS发展的必然趋势。通过WebGIS,人们可以方便地从WWW的任意一个节点浏览或获取Web上的各种分布式地理空间数据以及进行各种在线的地理空间分析。

2.2 WebGIS的特征

1)更广泛的访问范围。

2)平 *** 立性。无论服务器/客户机是何种机器,无论WebGIS服务器端使用何种GIS软 件,由于使用了通用的Web浏览器,用户就可以透明地访问WebGIS数据,在本机或某个服务器上进行分布式部件的动态组合和空间数据的协同处理与分析,实现远程异构数据库的共享。

3)可以大规模降低系统成本。

4)更简单的操作。

5)平衡高效的计算负载。能充分利用 *** 资源,将基础性、全局性的处理交由服务器执 行,而对数据量较小的简单操作则由客户端直接完成。

2.3 WebGIS的实现模型

1)服务器端策略。基于服务器的WebGIS通常采用CGI技术,依赖服务器完成GIS分析、输出等工作,客户端每一个GIS操作,都须由服务器接受请求,启动相应的CGI程序进行处理,然后将结果以JPEG或GIF位图返回用户。

2)客户端策略。通过服务器向客户端发送一段运行在本地机上的客户程序。这个程序可以与用户相交互,处理用户的一些简单请求,如地图的开窗、放大等,所需的矢量数据直接向服务器申请。当客户发出一些较复杂、高级的操作要求而客户程序不能处理时,才请求WebGIS服务器处理,其处理结果以矢量数据的形式发给客户端。

3)混合策略。综合考虑客户机、服务器计算能力和 *** 通信量,适当地分布GIS任务,以充分使用客户机和服务器的计算功能,提高互操作性和系统性能。例如,对空间数据库的查询、空间数据管理和复杂的空间分析功能应安排在服务器上实现;用户的交互操作和控制,对Web页面的局部空间查询、专题分析则在客户机上进行。这样客户机和服务器共同完成GIS的任务,提高了系统性能。

2.4 WebGIS的实现技术

1)CGI(公共网关接口法)。CGI技术是WebGIS最早使用的 *** 。CGI是一种连接应用软件和WebServer的标准技术,是HTML的功能延伸。

2)ServerAPI(服务器应用程序接口)。ServerAPI是比CGI更有效的WebServer扩充 *** ,进程创建和进程间通信负载大大减少,运行速度比CGI程序要快得多。

3)ASP(Active Server Page)。ASP解决了CGI接口对象化的难题,可以自动解析收集来的网页的数据。同时ASP可以使用Windows环境下的其他ActiveX对象。

4)Plug in和ActiveX Control。Plug in(插件)和ActiveXControl是扩充浏览器功能使之能够解释自定义GIS数据文件格式的 *** 。

这种 *** 的优点:执行速度快;可以处理矢量地图数据;在一定程度上平衡了客户和服务器两端的负载,减少了 *** 带宽要求。但这种浏览器的嵌入功能模块需要安装在本地机器上,对客户不方便和不安全。同时,传统软件编程 *** 中不同版本之间的兼容性及版本管理问题不能解决,一旦制定了新的格式,对应的浏览器中的嵌入模块就必须重新安装。

5)Java。Java成为实现WebGIS分布式应用体系结构最理想的开发语言。目前利用Ja va开发WebGIS系统的 *** 有两种:一是仅客户端部分采用Java技术的WebGIS系统,服务器端在现有系统代码基础上,用制定GIS空间数据传输协议以及和Java程序交互的功能模块实现,这是目前绝大多数WebGIS系统采用的 *** 。它的特点是系统开发简单易行,可以大大缩短系统开发周期,同时又能保证开发的系统有较强的制图和地理空间分析能力,并能在一定程度上实现跨平台应用。第二种 *** 是客户端和服务器端都基于Java的We bGIS。也就是纯Java系统的WebGIS。这种开发方式可以更大限度地发挥Java技术的优势,尤其是可以充分利用Java在服务器端和客户端为构建分布式 *** 应用提供的支持技术。

3.1 GIS的发展趋势

GIS经历了从项目GIS、部门GIS、企业GIS、社会GIS的演变过程,其系统集成也相应的经历了从主机GIS、(传统GIS)、分布式GIS(C/S)、智能化GIS(WebGIS)、虚拟实现GIS的变化过程。可以看出,GIS始终是向更高性能、更低成本、更具开放性和灵活性的方向发展的。随着面向对象理论和 *** 的成熟,虚拟现实技术的逐步完善, *** 化和智能化体系的普及,基于Internet和Intranet的WebGIS系统集成策略将是21世纪GIS系统的主流技术。

3.2 基于XML的 *** 环境下开放的空间数据交换格式

可扩展标识语言XML(Extensible Markup Language)可以让信息提供者根据需要,自行定义标记及属性名,也可以包含描述法,从而使XML文件的结构可以复杂到任意程度。XML具有跨平台、开放性、可扩展性、高度结构化等特点。

地理标记语言GML(Geography Markup Language)是由OpenGIS联盟制定的,它是基于XML的用于地理信息(包括地理特征的几何和属性)的传输和存储的编码规范。它用地理特征来描述世界,可以对很复杂的地理实体进行编码。

3.3 开放式地理信息系统

Web的本质特征就是其开放性。因此WebGIS的体系结构应该具备开放、互操作、可升级和可扩展性。开放的WebGIS首先应该包括数据的开放,即分布在异构数据库中的信息共享,XML的出现已经提供了一个很好的解决方案。另外,还应该包括数据访问的开放,即不同的地理信息系统软件之间具有良好的互操作性。对WebGIS所提出的这些要求正是OpenGIS联盟成立的目的。

与传统的GIS相比,OpenGIS建立起通用的技术基础以进行开放式的地理信息处理。它具有互操作性、可扩展性技术公开性、可移植性、兼容性、可实现性和协同性等特点。

3.4 基于分布式计算的WebGIS

分布式计算目前只实现了客户机/服务器计算,它是实现完全的分布式计算的一个中间步骤。完全的分布式计算是一个非集中的,对等的协同计算,是下一个世纪的理想计算模式。

目前分布式计算平台采用的体系结构或标准有对象管理组织的共同对象请求 *** 体系结构CORBA;微软的分布式部件对象模型DCOM和分布式 *** 体系结构DNA;分布式计算环境DCE,以及SUN的Java。

分布式WebGIS应用从简单的在Web浏览器上显示已绘制好的地图,发展到基于Internet的GIS功能综合。远程的GIS用户可以共享普通的GIS数据,并与其他的GIS用户实现实时通信。发展分布式InternetGIS应用技术,集中体现在服务器、客户机和 *** 通信三个方面。

3.5 *** 虚拟地理环境

三维虚拟现实技术正在成为 *** 应用的技术热点。随着Internet的飞速发展及三维技术的日益成熟,人们已经不满足Web页上二维空间的交互特性,而希望将WWW变成一个立体空间。

虚拟地理环境(VR)技术提供的可视化,不只是一般几何形体的空间显示,也是对地理信息、噪声、温变、力变、磨损、振动等的可视化,而且还可以把人的创新思维表述为可视化的虚拟实体,促进人的创造灵感进一步升华。

地理虚拟建模语言(GeoVRML)以虚拟建模语言(VRML)为基础来描述地理空间数据。其目的是让用户通过一个在Web浏览器上安装的标准VRML插件来浏览地理参考数据、地图和三维地形模型。它的出现将为在 *** 环境下实现虚拟地理环境提供一个良好的数据规范平台,将大大促进 *** 虚拟地理环境的应用。

3.6 移动GIS

移动GIS是一种应用服务系统。狭义的移动GIS是指运行于移动终端(如PDA)并具有桌面GIS功能的GIS,它不存在与服务器的交互,是一种离线运行模式。广义的移动GIS是一种集成系统,是GIS、GPS、移动通信、互联网服务、多媒体技术等的集成。移动GIS具有以下特点:

1)移动GIS运行于各种移动终端上,与服务端可通过无线通信进行交互实时获取空间数据,也可以脱离服务器与传输介质的约束独立运行,具有移动性。

2)移动GIS作为一种应用服务系统,应能及时地响应用户的请求,能处理用户环境中随时间变化的因素的实时影响,具有动态(实时)性。

3)移动GIS集成了各种定位技术,用于实时确定用户的当前位置和相关信息,因此它具有对位置信息的依赖性。

4)移动GIS的表达呈现于移动终端上,移动终端有手机、掌上电脑、车载终端等,这些设备的生产厂商不是惟一的,他们采用的技术也不是统一的,这就必然造成移动终端的多样性。

3.7 三维GIS

传统的GIS都是二维的,仅能处理和管理二维图形和属性数据。有些软件也具有2.5维DEM地形分析功能,随着技术的发展,三维建模和三维GIS迅速发展,而且具有很大的市场吸引力。

真三维GIS不仅表达三维物体(地面和地面建筑物的表面),也表达物体的内部,如矿山、地下水等。由于地质矿体和矿山等三维实体不仅表面呈不规则状,而且内部物质也不一样,此时Z值不能作为一个属性,而应该作为一个空间坐标,矿体内任一点的值是三维坐标x,y,z的函数,即P=f(x,y,z)。而我们在目前进行三维可视化的时候,z是xy的函数,如何将P=f(x,y,z)进行可视化,表现矿体的表面形状,并反映内部结构是一个难题。所以当前真三维GIS还是一个“瓶颈”问题,推出了一些实用系统,但一般都作了一些简化。

结束语:

GIS总体上呈现出 *** 化、开放性、虚拟现实、集成化、空间多维性等发展趋势。作为一种基于计算机的应用工具,GIS把地图的视觉和空间地理分析功能与数据库功能集成在一起,提供了一种对空间数据进行分析、综合和查询的智能化手段,涉及多学科的相互渗透、相互支撑

arcgis地理配准是什么?

就是用ArcGIS进行地理配准。

地理配准是将控制点配准为参考点的位置,从而建立两个坐标系统之间一一对应的关系。

地理配准主要用在数字化地图前,对地图进行坐标和投影的校正,以使得地图坐标点准确,使得地图拼接准确。

ArcGIS产品线为用户提供一个可伸缩的,全面的GIS平台。

ArcObjects包含了许多的可编程组件,从细粒度的对象(例如单个的几何对象)到粗粒度的对象(例如与现有ArcMap文档交互的地图对象)涉及面极广,这些对象为开发者集成了全面的GIS功能。

gis地图校正功能的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于gis地图变形怎么纠正、gis地图校正功能的信息别忘了在本站进行查找喔。

客服微信号码

客服微信号码

客服微信号码

客服微信号码

留言咨询
提交留言

您将免费获得

  • 全面诊断

    您将获得专家对您公司申请资质所需条件的全面诊断服务,我们不同于传统代办公司,仅是提供一些通用的,浅显的建议

  • 找出疏忽点

    我们在了解您公司的基本情况之后,将挖掘出您公司目前不利于资质申请的疏忽点,还将详细说明您在申请资质时应当改善的确切的事项。

  • 分析需求

    我们通过丰富的从业经验,结合目前的实际情况,确认好符合您实际经营情况的资质需求。

  • 定制方案与报价

    对您的需求深入了解后,将结合您公司目前的情况,我们将为您量身定制一份资质代办方案及报价单。

获取方案

×
请设置您的cookie偏好
欢迎来到资质参谋
我们希望在本网站上使用cookie,以便保障本网站的安全、高效运转及服务优化,有关我们使用cookie的更多信息,请点击查看了解更多。
接收Cookies
决绝Cookies