本篇文章给大家谈谈矿山地质灾害防治方案,以及矿区地质灾害的治理对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
目录一览:
矿山地质灾害恢复治理实例———济南市燕翅山恢复治理示范工程
一、基本情况
燕翅山位于济南市历下区姚家镇姚家村西南,主峰高程188.67m。地理坐标:东经117°04'15″~117°04'29″,北纬36°39'31″~36°39'40″。燕翅山呈北东—南西向展布,长约650m,宽约430m,占地面积约0.28km2。工作区交通便利,南接窑头路和经十东路,北有解放东路,东有浆水泉路,西连二环东路。
地质灾害的主要类型为铁矿采空塌陷形成的山体裂缝,在山体上总体呈线状分布,Ⅰ#主裂缝贯通整个山体(照片9-1)。山体裂缝的成因为外营力作用———矿山采空区塌陷形成,主要运动形式以垂直升降形式为主,兼具水平拉张形式。
添加微信好友, 获取更多信息
复制微信号
照片9-1 燕翅山远眺(治理前)
燕翅山铁矿开采始于1956年,由生建铁矿投入百余人进行开采,后逐步转为地下开采,1957~1960年间另有其他单位参与地表开采,后历经了多次转包,开采方式和层位错乱,矿井(洞)分布无规律,1996年因矿坑发生突水而关闭。因开采过程中剥离地表岩土体,造成高陡的边坡坡体临空面,随着开采面的不断推进,临空面越来越大,进入坑道开采后,随着采空区的不断增大,造成区域应力场的改变,岩体失去下部支撑卸荷失稳发生变形,从而导致了燕翅山山体开裂,产生16条裂缝,其中主裂缝3条,编号为Ⅰ#,Ⅱ#,Ⅲ#,次级裂缝13条,编号为L1,L2……L13。次级裂缝的走向、规模及空间分布等受到主裂缝的控制。受裂缝切割影响,山体局部出现坍塌。目前山体北侧陡崖临空面高度16~85m。
1998年山体Ⅰ#主裂缝的更大垂直落距为1.00m,裂缝更大宽度为0.8m,到2003年7月裂缝更大落距为1.50m,裂缝更大宽度为2.10m。自1996年到2003年7月间为山体裂缝的发展期,裂缝在水平位移和垂直位移两方面都发生了较大的变化(照片9-2,照片9-3)。
照片9-2 裂缝局部
照片9-3 裂缝掩盖地段
二、稳定性及危害
该山体裂缝共经历了孕育期、发展期和基本稳定期。自燕翅山铁矿开采到1996年铁矿闭坑关闭前后为山体裂缝的孕育期,期间采空区上方的岩体发生卸荷失稳,沿山体原有的节理裂隙逐渐形成山体裂缝,期间裂缝的规模较小,反映在地表为断续出现的裂缝,水平和垂直距离基本没有发生变化。1996年前后到2003年为山体裂缝的发展期,期间地裂缝逐渐形成,该期间山体裂缝规模发展迅速,裂缝的长度、宽度及垂直落距等迅速扩大,期末裂缝的垂直落距达到120cm,水平宽度更大达210cm。
燕翅山位于济南市东部人口密集区,周边有济南市城市建设管理局、济南市警官学校、山东省高检院、中铁十四局等 *** 机关和企事业单位,建有办公楼和宿舍区,另外还有当地的小学、幼儿园和住宅区,通过调查,在燕翅山周围受地质灾害威胁较大的住宅楼共有16栋,民房561间,学校3所,幼儿园1所,涉及人员3130人。
燕翅山山体裂缝虽然目前活动性微弱,短期内处于基本稳定状态,但是应该考虑到山体裂缝发展的基本特征,即它的发展具有不可逆性,稳定只是相对的,一遇到诱发的条件就会发生移动,且发展速度较快,短时间内造成较大的破坏。考虑到燕翅山山体裂缝发生发展的地质背景和地质环境条件,裂缝的发展破坏可能引发的次生地质灾害很多,如果地裂缝遭遇诱发因素造成实质性发展,有可能诱发山体滑坡等次生地质灾害,多种灾害一起发作,后果不堪设想。
三、综合治理
(一)治理目标原则
1.治理目标
通过合理的工程治理措施,消除Ⅰ#主裂缝对游人的威胁,恢复燕翅山山体地貌景观,美化燕翅山山体的不良视觉效果,提升燕翅山整体形象。
2.治理原则
安全性原则:首先要保证燕翅山山体的整体稳定,不能在消除现存地质灾害隐患的同时形成新的灾害隐患;其次为施工安全,施工过程中尽量采用对山体稳定有利或对山体稳定无影响的施工措施,防止造成山体失稳或产生崩塌落石等,施工人员安全防护措施要到位,防止发生施工安全事故。
环境保护原则:本次治理工程必须确保工程竣工后治理区与周边环境的协调一致,与燕翅山的整体景观效果达到浑然一体、自然天成的效果,施工中必须注意对山体现有地貌和地质环境的保护,严禁在山上就地取材,乱挖乱掘,保护地貌景观,同时在竣工后做到工完场清,将各种施工用材料、设备设施及施工垃圾清理干净。
自然恢复原则:治理工程结束后要达到生态环境自然恢复的效果,节省治理和养护费用。在植被选育过程中优选生命力强的植物物种,依靠自然条件独立生存,良性发展。
(二)施工规范及规程
1.规范、标准依据
1)《建筑地基基础设计规范》(GB50007—2002);
2)《建筑地基处理技术规范》(JGJ79—2002);
3)《建筑地基基础工程施工质量验收规范》(GB50202—2002);
4)《混凝土结构工程施工质量验收规范》(GB50204—2002);
5)《砌体工程施工质量验收规范》(GB50203—2002);
6)《建筑边坡工程技术规范》(GB50330—2002);
7)《建筑施工高处作业安全技术规范》(JGJ80—91);
8)《建设工程施工现场供用电安全规范》(GB50194—93);
9)《地质灾害防治条例》(2004年3月);
10)《山东省地质环境保护条例》(2003年3月)。
2.地质依据
1)《济南市燕翅山矿山地质环境治理规划方案》(山东省地质环境监测总站,2005年8月);
2)《济南市燕翅山矿山地质环境治理Ⅰ#主裂缝治理工程施工方案》(山东省地矿工程集团有限公司,2007年7月)。
(三)治理工程 *** 及施工技术要点
本工程根据山体裂缝发育特征和施工场地的条件,主要采用了危岩体卸载、地裂缝回填、坡面截排水、造景绿化工程,以及工程养护维护等 *** 。其技术要求如下:
1.危岩体卸载
工程开工前根据现场踏勘确定裂缝施工区域内的危险岩石块体,主要分布于裂缝的两侧和裂缝内部,针对不同的情况采取相应的施工措施分别对其进行了清除或加固,位于裂缝边缘和裂缝内的危险岩石变形体采取铁锤击碎和撬动的方式,处理于裂缝内部,裂缝周边的耸立或孤立的较大单体活动岩石采取铁锤击碎的 *** ,将其填入裂缝内部,防止对游人造成伤害,消除对游人的潜在安全威胁。清除危险岩石块体约50m3。
2.坡面截排水
地裂缝西部位于地表径流汇集区,强降雨过程中形成的地表径流沿坡面进入裂缝内部,客观上降低地裂缝的裂隙剩余黏结强度,促进了地裂缝的发展。施工中采用坡面堆积的块石等在Ⅰ#主裂缝的上方沿垂直地表径流方向垒砌了简易挡墙,阻挡地表径流沿坡面向地裂缝的流动,改变地表径流的方向,使地表径流沿山脊向下流动,防止恶劣天气条件下大量地表径流进入地裂缝,对其稳定性产生不良的影响。该挡墙在施工中发挥了极大作用,经历了“7·18”暴雨的洗礼,经雨后检查,地面径流对裂缝充填材料未产生影响,确实改变了地表径流的流向,有效保护了裂缝填充体材料。
3.地裂缝回填
为保证施工效率,降低工程施工中的安全风险,采用以机械为主、人工辅助为辅的方式对地裂缝进行填充施工。施工人员按照设计要求将各种原材料拌制好后,采用大型铲车将材料运到材料运输设备的起点站,然后通过材料运输设备将材料送到山体裂缝的上部,材料通过导料槽,采用人工辅助方式使材料沿导料槽进入一区裂缝内部,填充材料在自重作用下落入裂缝内,靠材料自由落体的击打作用使材料密实。在二区施工前,首先建设了坡上材料中转设备及中转轨道,材料中转轨道基本沿裂缝走向铺设,填充材料经材料运输设备运输到一区裂缝的上方进行中转,然后沿二区的裂缝走向进行充填施工,材料通过导料槽直接进入裂缝内部。施工三区裂缝区段的坡度大,无法铺设轨道,采用将导料槽加长的 *** 对裂缝进行充填施工。填充材料顶面高度以距离裂缝下盘70cm时为止。施工过程中严格执行规范和设计要求,遵章作业,保证了工程施工的顺利进行。
4.混凝土工程
在地裂缝的FG段,因为该段裂缝宽度、深度均较大,为保证工程施工质量,在工程施工前与监理单位协商确定,采用裂缝底部和中部铺设钢筋网,并分别浇注混凝土对裂缝填充材料进行加固。
5.造景绿化工程
按照治理方案要求,首先在填充材料顶部覆盖约20cm厚的红粘土盖板,作为隔水底板,其作用一是防止地表水进入裂缝内部,对裂缝的稳定产生不良影响;二是涵养上部耕植土层,促进上部植物的生长。在粘土盖板的顶部铺设50cm厚的耕植土(客土),作为绿化用土层。绿化造景工程采用多角度立体化方式进行,首先在回填的耕植土表面撒播高羊茅草种进行地面绿化,其次在裂缝施工区域不定间隔种植连翘和紫荆等攀爬植物对裂缝进行覆盖,对裂缝区域进行遮挡,对裂缝施工区域进行多层次多角度立体化的绿化,以期达到更佳的施工效果。
6.养护维护
工程施工过程中及工程施工完毕后,对裂缝区域的植被及其他工程均安排专人负责养护维护,及时对植被采用草帘子进行覆盖,浇水,保证植被的成活率。及时确定工程竣工后的专职养护维护人员,并与其签订工程养护维护目标合同,确保在工程竣工后2年内治理工程得到有效的养护维护。
(四)施工工艺流程及施工工序
1.施工工艺流程
本工程施工工艺流程为现场踏勘、工程施工准备、工程开工、危岩体卸载、坡面截排水、裂缝充填、混凝土工程、造景绿化工程、养护维护及竣工清理等(图9-7)。
2.施工工序
(1)现场踏勘
组织技术人员和工程施工管理人员登上燕翅山,对山体裂缝施工现场进行现场踏勘,核对工程所有资料,掌握工程实际情况,现场分析制定施工方案,确定主要施工管理人员。经对现场情况认真分析,根据裂缝不同区段的走向、坡度、裂缝规模等现场条件,确定对裂缝进行分区施工,降低施工难度,提高施工效率。AB、BC为施工一区,CD、DE、EF段为施工二区,FG、GH段为施工三区。具体见施工分区图9-8。
图9-7 工程施工工艺流程图
图9-8 施工分区图
(2)工程施工准备
根据现场踏勘和分区情况,组织该项目施工和管理人员深入到工程施工现场,对现场环境和施工条件进行考察分析,研究确定工程施工措施,以及投入到设备、机具、材料、工程的材料运输路线、工程材料的堆放位置、转运路线等,并对所用的材料进行详细的对比考察。
场地清理:首先对材料堆放场地进行清理整修,确保场地满足施工要求,及时对材料转运路线进行拓宽整修,确保该路线的安全畅通,保证工程施工材料的及时、安全运输;其次积极与当地村委和居民协商,取得他们的支持,在现场附近租赁民房约50m2和临时用水电等;第三,设立了工程施工现场指挥部,及时指导和解决工程施工过程中遇到的困难和问题。
材料运输设备制作安装:为了提高施工效率,考虑到施工现场位于坡度较陡、高度较高的山腰部位,运输难度大,是本次治理工程的关键点。因此,本次工程施工的材料、机械设备以及废料的清除等采取了“梯级轨道工程”(照片9-4)运输为主、人工辅助方式相结合的方式。其具体做法为:工程材料堆放在燕翅山西坡南侧,采用ZL—50型铲车对材料进行转运,转运路线沿原毛石路进行。在山体西坡中间位置,安置材料运输轨道的起点站,现场放置发电机等动力设备以及动力控制设备。轨道自该起点基本沿山脊向山顶铺设,轨道支撑采用建筑工程架管搭建,轨道铺设过程严格按照建筑工程施工及有关规范进行,保证轨道的安全、合格及畅通。
照片9-4 材料运输轨道
照片9-5 材料中转
材料运输轨道分为2段,1段为上料轨道,2段为中转轨道,施工材料在山坡顶部进行中转,方便二区和三区的施工。中转轨道距离山底的距离约为80m,基本沿裂缝的走向铺设,位于施工二区范围内。
安全防护设施:施工过程中为防止发生落石、施工人员滑落及材料运输设备、机械的滑落,施工前沿裂缝走向方向安装防护网,采用建筑架管搭建安全护栏,并悬挂安全立网,在材料运输路线的下方安装防护栏和防护网,在轨道式绞车的侧上方设置防滑落装置,防止绞车滑落到坡下造成安全事故。施工现场及周围安放安全警示牌,劝诫燕翅山周围居民登山,提示登山人注意安全。组织人员沿裂缝下方搭建安全防护栏,架设安全网,防止施工过程中填充料滚落和施工人员滑落,保证工程施工安全。沿材料运输路线下方安装防护栏(网),防止在运料过程中发生人员滑落事故。
工程施工准备工作完成后,立即将所有工程准备材料报送监理单位并向监理单位汇报工程准备情况,监理单位经过现场检查后同意工程开工。
(3)施工工序
危岩体卸载:根据现场踏勘情况,现场施工技术人员圈定了裂缝及其周边区域的危险岩石块体,并确定了处理方案。对裂缝内部的危岩体进行凿落处理,对裂缝两侧的危岩体进行击碎回填入裂缝或加固处理,共处理危岩体十余处,保证了下步施工工序的安全,消除了对游人的潜在威胁。
坡面截排水:地裂缝治理施工区域位于燕翅山西北坡,处于山体地表径流汇集区,施工期间恰好处于汛期,降雨等可能导致坡面形成地表径流,对裂缝治理工程的施工和裂缝填充材料的稳定形成潜在的威胁。故现场施工人员在施工期间利用山体表面的块石等材料沿裂缝上部走向方向修建了拦水截水挡墙,长度大约35m,高度约30cm,用以改变地表径流的流动方向,阻挡地表径流向地裂缝方向的汇集,阻止地表水流向裂缝,对工程施工和裂缝的稳定造成不良影响,裂缝施工完成后对其予以拆除,恢复原始地貌。
山体裂缝回填:按照治理方案技术要求和施工方案的要求,对地裂缝进行回填处理,回填材料采用级配块石碎石料。材料通过运输轨道采用绞车运输(照片9-5),并通过导料槽自由落体进入地裂缝内部,材料靠自重作用密实。
混凝土工程:是本次工程施工的关键工序。其核心是保证裂缝的连接强度。本工程中的混凝土工程主要在FG段裂缝施工过程中,该段裂缝宽度、深度均较大,更大宽度约2.10m,裂缝更大深度约12.10m。为保证工程施工质量,消除Ⅰ#主裂缝对游人的潜在威胁,经和监理单位协商,决定在该裂缝的底部和中部铺设2层钢筋混凝土层,加强裂缝填充材料的结构强度,两层混凝土中分别铺设16@250×250钢筋网片。混凝土层的厚度为50cm,标号C25。
施工中首先对该段裂缝的底部进行初步的填充,填充高度约1.0m,将填充材料的顶面修平整,准备工作完成后对裂缝宽度、深度等进行测量,根据测量结果确定钢筋笼的规格,经现场协商,决定将钢筋笼做成等腰梯形,将加工好的钢筋笼放入裂缝内填充材料顶部,钢筋笼底部距离材料顶面距离约10cm,将梯形较短的底边朝下放置,以利于钢筋混凝土层的稳定。钢筋笼主筋采用7~918@250~400,环筋采用8.5@250。钢筋笼放置稳定后,检查其与裂缝两侧的距离和距填充材料顶面的距离,保证其满足施工规范的要求,确保钢筋保护层的厚度满足施工要求。混凝土采用现浇C25混凝土,混凝土在山下搅拌均匀,通过材料运输轨道运至施工部位,沿导料槽进入裂缝内部,浇筑过程中采用振动棒进行振捣密实。钢筋混凝土不小于60cm。具体见混凝土工程施工剖面示意图(图9-9)。
图9-9 混凝土工程施工剖面示意图
造景绿化工程:是本次工程施工的重点工序。其核心是保证覆土层与岩体稳固结合,防止造成新的水土流失,施工的要点和关键是保证红粘土与裂缝两壁紧密接触,采用的施工工艺是“图钉床固土工艺”,具体做法为:
按照设计要求,在裂缝填充材料的顶部铺设红粘土盖板,厚度20cm,选用山前残积成因的红粘土,施工中严格按照技术要求进行施工,红粘土与裂缝两壁紧密接触,并采用人工夯实。在粘土盖板的上部铺设耕植土层,用于地裂缝治理区域的绿化涵养。耕植土层厚度为50cm,采用熟土,施工中采用人工方式对耕植土层进行夯实处理,为了夯实措施不对地裂缝的稳定产生影响,采用16磅铁锤进行夯实处理(照片9-6,照片9-7)。
照片9-6 耕植土充填施工
照片9-7 人工夯实
为了更大限度地恢复燕翅山地貌景观,工程技术人员经多次讨论,确定了多角度、立体化的造景绿化方案:首先在耕植土表面撒播高羊茅草种,该草耐寒、耐干旱能力强,野外能够独立生存成长,对地表进行表层的绿化;其次在裂缝治理区域不定间隔栽种紫荆和连翘等植物,对裂缝垂直裂面进行遮挡,以期达到更佳的视觉效果。
为保证地表回填土层不随地表径流或大气降水流失,在裂缝FG段地表耕植土中埋设钉床(照片9-8),对地表土层进行固定。该段裂缝坡度大,宽度和裂缝深度均较其他部位大,为保证裂缝在该段的施工质量,防止地表土层随地表径流流失,在FG段埋设钉床,钉床宽度50cm,长度为250cm,钉长约20cm。钉床固定地表植被的原理是地表植被的根系深入地下后与钉床联结成一体,有效增大地表植被的地表附着力,防止因坡度过大造成地表植被的整体滑移。
养护维护:施工中采取分区分段施工,及时确定绿化工程养护人员,对绿化地段进行养护维护,地表绿化草种撒播后采用草帘子进行覆盖保护(照片9-9),及时浇水养护。与现场养护人员签订协议,负责在工程竣工后2年内定期对地裂缝施工区域进行养护维护。
照片9-8 钉床图片
照片9-9 地表绿化
竣工清理:工程竣工后及时对施工现场进行地毯式清理,务必将各种施工机具和施工垃圾清理干净,及时清理出现场并妥善处理,做到工完场清。及时将因施工破坏的植被进行恢复,保护环境。
四、治理效果
1)危岩体卸载:根据现场踏勘情况,确定裂缝两侧危险岩石块体的位置、规模等,并及时采取措施将其卸载或采取措施进行加固,裂缝周边区域施工完毕后无对游人造成潜在威胁的危岩体存在。
2)坡面截排水:坡面截排水挡墙在施工过程中发挥了作用,7月18日的大暴雨未对裂缝产生不利影响,裂缝内的绿化植被保存完好,挡墙有效阻挡了地表径流,阻止了大部分地表径流进入裂缝内部对裂缝及填充材料的稳定造成破坏。治理工程施工完毕后对其进行了拆除处理,更大限度保护矿山地质环境。
3)裂缝回填:严格按照设计要求和施工方案的要求进行施工,裂缝内填充材料密实,沉降变形很小,经历了7月18日大暴雨的洗礼,未产生沉降变形。同时在裂缝FG段裂缝内增加了钢筋混凝土层,增强了裂缝填充材料的整体结构强度,保证了工程施工的质量。
4)造景绿化:粘土盖板施工和耕植土回填施工严格按照设计要求进行,红粘土与裂缝两侧紧密接触,能够有效发挥阻水作用。耕植土层采用熟土,利于绿化植被的栽种和成活。两者在施工中均采用人工夯实,厚度符合设计要求,施工质量良好。
绿化造景工程采用多角度、立体化方式,地表种植耐寒、耐干旱的高羊茅草种绿化,辅以连翘、紫荆等攀爬类植物,更大限度地恢复了燕翅山的地质地貌景观,能够保证其达到良好的视觉效果。
具体治理效果见治理后模拟效果照片9-10。
照片9-10 治理后西侧模拟效果图
地质灾害恢复治理方案和矿山地质环境保护与恢复治理方案是一回事吗
不是一回事情:
地质灾害恢复治理方案的对象是针对已经发生的地质灾害如滑坡、泥石流、岩溶塌陷等,对其采取的清除、加固等措施,相当于施工设计;
矿山地质环境保护与恢复治理方案的对象是针对特定的矿山,对矿山地质灾害危险性评估中提出的可能发生的地质灾害如如滑坡、泥石流、岩溶塌陷、地下水污染等,根据其发生的危险性等级作出预防措施即预案,是办理采矿权许可证和采矿安全许可证必需的材料之一。
矿山崩塌、滑坡灾害防治要点
露天采矿的高陡边帮、地下采矿山体边部是崩塌、滑坡地质灾害多发地段。矿山崩塌、滑坡对矿山安全生产危害巨大,严重者甚至会导致露天采矿场提前关闭。要避免或减轻崩塌、滑坡地质灾害的危害,必须在矿山建设初期,认真做好采矿、选矿、辅助生产设施及生活区选址区地质灾害危险性评估,尽可能避开崩塌、滑坡灾害隐患点,如受地形地貌条件制约,不得不在隐患区内建设时,必需事先采取工程治理措施消除和控制隐患的发生。
5.4.5.1 崩塌的预防
在山地区,地下采矿形成的地面塌陷、地裂缝可诱发山体崩塌、滑坡灾害链。如甘肃阿干镇煤矿因井下采空而引发的山体崩塌。陕西铜川金华山煤矿滑坡,摧毁了村庄和工业广场等设施。
崩塌多发生于坡度大于55°、高度大于30m、坡面凹凸不平的陡峻斜坡上。岩性对岩质边坡的崩塌具有明显的控制作用。一般来讲,块状、厚层状的坚硬脆性岩石,常形成较陡峻的边坡,若构造节理或卸荷裂隙发育且存在临空面,则极易形成崩塌;相反,软弱岩石不易发生崩塌。根据矿山崩塌发生的机理即可从采矿设计和工艺上采取相应的对策和措施予以预防。
5.4.5.2 滑坡的防治
防止露天采矿边帮滑坡首先要确定合理的边坡角,为使露天采掘剥离作业正常进行,采场边坡岩体应具有一定的稳定性。露天矿边坡角过陡时,稳定性差,容易发生滑坡灾害,危及人员和设备的安全;边坡角过缓,则会增加剥离量,降低采矿经济效益。因而,综合考虑矿体形态、埋藏条件、露天采场边坡岩石力学性质、断层节理、地下水位的变化、采场内爆破震动、采场几何形状、降雨因素等,确定合理的露天采矿场的边坡角至关重要。目前边坡角取值的经验数据为:铁道运矿的露天煤矿底帮边坡角一般不超过30°,顶帮取30°~40°,端帮可稍陡;金属露天矿顶底帮边坡角取40°~50°,矿体缓斜或有不利地质结构时,相应降低。为了避免露天矿边坡发生滑坡,在露天矿边缘设置疏导水防洪设施,经常性检查边坡稳定,防止灾害的发生。
面对滑坡地质灾害隐患,应综合考虑防治灾害费用和受威胁对象的重要性,以优先考虑搬迁避让为上,对不能搬迁避让躲避灾害发生的,可采用工程措施治理。如陕西焦坪露天煤矿用抗滑桩治理滑坡。另外,及时用土回填沟壑、山体边部的裂缝,避免降雨入渗形成和加剧滑坡的发生。在废石、煤矸石堆放的山沟中,修建拦渣挡墙,防止松散废渣在重力、暴雨等因素下形成滑坡灾害。总之,在查明诱发滑坡主要因素的基础上,综合考虑经济因素,设计“砍头”、“拦腰”和“压脚”等经济合理的治理方案。
地质灾害防治措施
崩塌灾害防治的工程措施:
1、拦挡:对中、小型崩塌可修筑遮挡建筑物或拦截建筑物。拦截建筑物有落石平台、落石槽、拦石堤或拦石墙等,遮挡建筑物有明洞、棚洞等。
2、支撑与坡面防护:支撑是指对悬于上方、可能拉断坠落的悬臂状或拱桥状等危岩采用墩、柱、墙或其组合形式支撑加固,以达到治理危岩的目的。对危险块体连片分布,并存在软弱夹层或软弱结构面的危岩区,首先清除部分松动块体,修建条石护壁支撑墙保护斜坡坡面。
3、锚固:板状、柱状和倒锥状危岩体极易发生崩塌错落,利用预应力锚杆(索)可对其进行加固处理,防止崩塌的发生。锚固措施可使临空面附近的岩体裂缝宽度减小,提高岩体的完整性。
4、灌浆加固:固结灌浆可增强岩石完整性和岩体强度。一般先进行锚固,再逐段灌浆加固。
5、疏干岸坡与排水防渗:通过修建地表排水系统,将降雨产生的径流拦截汇集,利用排水沟排出坡外。对于滑坡体中的地下水,可利用排水孔将地下水排出,从而减小孔隙水压力、减低地下水对滑坡岩土体的软化作用。
滑坡灾害防治的工程措施
1、排除地表水和地下水:滑坡滑动多与地表水或地下水活动有关。因此在滑坡防治中往往要设法排除地表水和地下水,避免地表水渗入滑体,减少地表水对滑坡岩土体的冲蚀和地下水对滑体的浮托,提高滑带土的抗剪强度和滑坡的整体稳定性。
2、减重与加载:通过削方减载或填方加载方式来改变滑体的力学平衡条件,也可以达到治理滑坡的目的。但这种措施只有在滑坡的抗滑地段加载,主滑地段或牵引地段减重才有效果。
泥石流灾害防治的工程措施
1、跨越工程:在泥石流沟上方修筑桥梁、涵洞跨越避险工程,使泥石流有排泄通道,又能保证道路的畅通。
2、穿越工程:在泥石流下方修筑隧道、明硐和渡槽的穿越工程,使泥石流从上方排泄,下方交通不受影响。这是通过泥石流地区的又一种主要工程形式,对于隧道、明洞和渡槽设计的选择,总的原则是因地制宜。
3、防护工程:对泥石流地区的桥梁、隧道、路基及重要工程设施修筑护坡、挡墙、顺坝和丁坝等防护工程,从而抵御泥石流的冲刷、冲击、侧蚀和淤埋等危害。
4、排导工程:修筑导流堤、急流槽、束流堤等排导工程,改善泥石流流势、增大桥梁等建筑物的排泄能力。
5、拦挡工程:修筑拦砂坝、固床坝、储淤场、支挡工程、截洪工程等拦挡工程,控制泥石流的固体物质和雨洪径流,削弱泥石流的流量、下泄量和能量,以减缓泥石流的冲刷、撞击和淤埋等危害。
扩展资料:
诱发地质灾害的因素主要有:
1、采掘矿产资源不规范,预留矿柱少,造成采空坍塌,山体开裂,继而发生滑坡。
2、开挖边坡:指修建公路、依山建房等建设中,形成人工高陡边坡,造成滑坡。
3、山区水库与渠道渗漏,增加了浸润和软化作用导致滑坡泥石流发生。
4、其它破坏土质环境的活动如采石放炮,堆填加载、乱砍乱伐,也是导致发生地质灾害的致灾作用。
参考资料来源:百度百科——地质灾害防治
关于矿山地质灾害防治方案和矿区地质灾害的治理的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。