地灾资质探地雷达要求(地质雷达适用条件)

2024-06-04 地质灾害资质 68
A⁺AA⁻

今天给各位分享地灾资质探地雷达要求的知识,其中也会对地质雷达适用条件进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

目录一览:

地质灾害与地下污染探测

程业勋

(中国地质大学(北京))

“环境”一词起源于18世纪,逐步被广泛引用到自然环境、社会环境、经济环境等。但当代环境科学研究的环境范畴,主要是指人类生存与可持续发展的外部条件。所以《中华人民共和国环境保护法》中明确指出:“本法所指的环境,是指人类生存和发展的各种天然的和经过人工改造的自然因素的总体,包括大气、水、海洋、土地、矿藏、森林、草原、野生生物、自然遗迹、自然保护区、风景名胜区、城市和乡村等。”地球物理学主要研究发生在岩石圈、水圈、大气圈和地球空间的对人类生存和发展有重要影响的环境变化和供给条件。因此,从一定意义上讲,地球物理学从产生的那一天起,就是一门研究人类生存与发展环境的科学。

地灾资质探地雷达要求(地质雷达适用条件)

微信号:MeetyXiao
添加微信好友, 获取更多信息
复制微信号

西方工业化300年,已经消耗地球亿万年的资源储备,而且日益加剧,造成资源紧缺,环境恶化。2007年10月25日联合国环境规划署(UNEP)发布集1400位科学家智慧写成的《全球环境展望》(GE0-4)综合报告指出,自1978年以来的30年,人类消耗地球资源的速度,已将人类自身置于岌岌可危的境地,到目前为止,已经超出地球生态承载能力近三分之一。每年有7.5万人死于自然灾害,全球一半以上城市的环境超出世界卫生组织(WHO)制订的污染标准。

岩石圈(含土壤)、水圈(含地下水)、大气圈和生物圈构成地球物质循环的整体,是人类生存不可或缺的各个组成部分。地下(土壤和岩层)一直是人类处置废弃物和垃圾的场所。包括大气沉降物在内,超过土壤自净(降解)能力的时候,就会构成土壤污染,特别是难以被土壤生物降解的有毒物质,还会随着水的蒸发和大气环流,扩散到全球(称蚱蜢效应)。这就告诉我们,对于难以降解的有毒物质来讲,地球是一个封闭的生态系统,这些有毒的污染物,只能转移而不会消失。即使远离污染源上万千米,生活在北冰洋的伊努特人体内也可以检测到持久性污染物(POP)的存在。

美国上世纪30~40年代,就开始将工业废弃物以及活水、污油注入地下。时隔二三十年后,由于地下地质环境的变迁,有些原来埋在河谷(山谷)地区的这些物质,经历容器的腐蚀、洪水冲刷而扩散、深灌的污水上涌,造成泄漏污染。为进一步防治,在不得已的情况下,找到地球物理 *** ,探测再次造成的地下污染分布区域。这也是环境地球物理分支学科建立的起始。

1 自然地质灾害的勘察

地球上山地面积占陆地总面积的四分之一,居住人口占总数的10%,道路总里程占30%,是泥石流、滑坡、崩塌等自然灾害主要分布区。我国地处自然地质灾害集中的太平洋环带和地中海至喜马拉雅山带的聚集部位,成为地震和各种地质灾害多发国家之一。据报道,全国共有地质灾害隐患地点22.92万处,威胁着3500万人的安全,财产超万亿元,以及重大工程、城镇和村庄的安全。1965年11月23日发生在云南禄劝县火山泥沟的特大滑坡,总土方量达3.9亿m3,滑体流速高达5~6km,在河中迅速堆积成长1100m,高167m的拦河大坝,形成5万m3蓄水的堰塞湖。不久滑体大坝陷落,迅速淹没5个村庄。1981年7月9日暴雨引发成昆铁路线上利子依达沟发生的泥石流,使400吨重的巨石冲入沟口,将数节火车推入大渡河,迅速堆积成坝,形成回水5km,积水29万m3的堰塞湖。长江三峡链子崖危岩 *** 于秭归县新滩镇,长江南岸,兵书宝剑峡的出口处,属于西陵峡崩塌隐患区。本区有历史记载的崩塌滑坡造成重大自然环境破坏性灾害的有14次。其中1030年崩塌滑坡体堵塞长江21年,1452年滑坡堵江82年,1985年6月12日凌晨3点45分至4点20分,历时35分的大滑坡,使总计3,000余万立方米的崩塌堆积体整体滑移,高速飞下的土石将位于江岸的新滩镇全部摧毁,在江内激起54m高的巨浪,将对岸上的建筑卷入江中。由于几年前的电磁测深和浅层地震为主查明了滑体的厚度和范围。1977年开始连续监测,及时准确预报,撤离果断,滑区内457户,1,371人,无一人伤亡,仅航运中断12天。这样大规模的滑坡,及时准确预报成功,在国内外是罕见的,被誉为一起世界奇迹。[1]

我国山地多,滑坡、泥石流、崩塌等地质灾害的分布区域占国土总面积的65%。随着自然的变迁和人为的致灾作用,各种地质灾害逐年增加。据四川省统计,泥石流致灾的县市:20世纪30年代有14个;50~60年代76个;70年代109个;1981年135个;1990年达200个。70年代以前地面沉降、地面塌陷和海水入侵还是少数地区,近年来由于对地下水的过度开采,至2008年有70多个城市出现地面沉降,总面积达6.4万km2,上海、天津、西安等城市有的降幅达2m,天津塘沽达3.1m;地面塌陷3000多处,总面积300多km2;海水入侵总面积达1000km2。

各种地质灾害的发生都是地质环境变化引发致灾岩体内部结构变异,稳定性受到破坏的结果。因此,自然地质灾害勘察的目的在于查明致灾岩体(土)的地质环境和内部结构,研究致灾岩体的结构变异和稳定状态,圈定致灾岩体范围,评价发生发展趋势。在滑坡、崩塌、泥石流、地面塌陷以及海水入侵等地质灾害勘察中[2],应用地球物理勘查主要是查明致灾的地质条件,为防治或预测预报提供依据。

表1 自然地质灾害地球物理勘查的主要任务和可用的技术 *** 一览表

为了进一步说明地球物理勘查在自然地质灾害防治中的作用,列举三个实例如下。

1.1 滑坡体和滑坡面的勘察

滑坡勘查的主要任务是查明滑坡体的深度和范围,以及滑动面的深度与形态[3]。

黑海沿岸高加索地区是滑坡发育地区之一。滑坡所处的地形高约为20~25m,滑坡体主要由砂质粘土加碎石构成,下伏泥岩风化壳。选用电阻率法以及浅层地震进行勘察。电阻率测量结果如图1所示。

图1 电阻率与地震划分的滑体与滑床

可划为三层:地表层电阻率ρ1=13~29Ω●m,相当于滑体。中间层电阻率ρ2=2~4Ω●m,为风化岩,可认为相当于滑动带。最下层电阻率ρ3=8~12Ω●m,是未风化的泥岩,为该滑坡的滑床;浅层地震资料解释,可划为上下两层:上层纵波速度VP=340~360m/s,可认为是滑体和滑动带,下层:VP=1360~1400m/s,为坚硬的未风化泥岩。在未风化的泥岩顶部用电阻率和地震测量得到的速度跃变界面和电性界面在深度上比较一致(相差1~1.5m),构成的过渡带(弱带)可能形成滑坡的滑动面。

1.2 滑坡的监测与预测研究

山区占地球陆地总面积的四分之一,加上矿山开采构成的人为坡地,滑坡每年造成的经济损失和人员伤亡巨大。对滑坡的监测和预测引起重视[3]。1985年6月12日凌晨3点45分发生在长江三峡新滩镇大滑坡预报成功。其监测工作中的地质、物探和测量工作是从1962年开始的,基础调查工作完成后,于1977年设置四条视准线,连续观测滑坡堆积体的水平位移。前后监测研究23年。多年来设想主要用地球物理 *** 预报滑坡的研究也不在少数。其中南乌克兰露天开采铁矿的斜坡滑动研究是以视电阻率(ρs)观测和矿山测量联合研究提出的。滑坡地点如图2(a)所示,视电阻率(ρs)观测,采用不同供电极距的对称四极装置与水准点矿山测量共同布置在滑动体上。连续观测得到三种极距视电阻率曲线如图2(b)所示,两种极距的视电阻率比值ρs*/ρso—t曲线;反映地电断面变化非常灵敏。图2中t1,t2,t3时刻视电阻率出现异常,反映t1时刻斜坡岩石形成微小裂隙;t3时刻斜坡岩石产生滑落。

图2 倾斜露天矿场滑坡上的动态观测

1.3 海水入侵的勘察

近年来由于地下水的过度开采,造成地下漏斗100多个,面积达15万km2;70多个城市地面沉降达6.4万km2;沿海城市的海水入侵达1000km2以上。莱州湾、辽东半岛历来最为严重。中国科学院地球物理所利用电测在这一地区进行了勘察[4]。研究了海水入侵与电阻率关系(表2)。根据电阻率分布划出海水入侵平面图(图3)。该区海水入侵可分为入侵严重区(ρ1=2~17Ω·m);轻度区(ρ1=17~30Ω·m);受入侵影响区(ρ1=30~100Ω·m)。在王河和朱桥河地区为两个地下漏斗区,地下水位分别为–15m和–10m,这一地区海水入侵面积更大,致使50万亩耕地不能使用地下水灌溉。

表2 海水入侵程度与电阻率关系

图3 山东莱州三河下游海水入侵分布图

2 地下污染物的勘查

近30年来,随着经济和城市人口的迅速增长,废弃污染物的排放量逐年增加:1999年工业废弃物排放量7.8亿吨,2007年达17.6亿吨,增长率15%,截至2009年废弃物积存量已达80亿吨;城市生活垃圾2000年总量为1.4亿吨,2005年为1.95亿吨,2010年将达2.0亿吨[5]。据调查,全国668座大中城市中2/3被垃圾围城,1/4城市已没有堆放场地。全国有近亿辆汽车在开动,加油站林立。据北京1000多座加油站调查,有1/2存在漏油现象。

所有排放的污染物,无论是气体、液体和固体,最终的归宿都是土壤和水体(地表水和地下水)。截至20世纪末,我国受污染土壤的耕地面积达2000万公顷,约占总耕地面积的1/5,每年因污染导致粮食减产1000万吨。水污染更为突出:“70年代水质变坏,80年代鱼虾绝迹,90年代身心受害”,成为水污染的真实写照。600座大中城市浅层地下水都不同程度地遭受污染,其中一半城市地下水已不能直接饮用。农村已有3.6亿人喝不上符合标准的饮用水。

地下污染,往往不易及时发现,直到危及生产和生活。如吉林工业废渣堆淋滤液渗入地下,导致几十平方千米内1800眼水井被污染而报废。佳木斯140多万吨工业和生活垃圾堆放场,产生的硝酸基荃污染地下水,使6个自来水厂停产。北京天通苑是20世纪60~70年代的垃圾堆放场,停用后掩埋,改建住宅小区,2008年一名绿化工人下井(在三区22楼外)接水管时中毒昏倒井内,另一名下去营救也倒在井内,经查为硫化氢中毒。这就是垃圾堆掩埋产生的“定时炸弹作用”。宋家庄三位地铁工人挖探井(2009年4月28日),3m深时闻到臭味,5m深时感到不适,一人呕吐,医院检查三人为中毒,经查该地20世纪70年代曾是一家农药厂,未作土壤污染处理,毒气在地下土壤中积累。

人的眼力有限,不可能看清地下污染。地球物理勘查就是帮助人们即时了解地下污染存在空间以及迁移状况。美国20世纪40年代开始在几个河谷和山谷填埋工业废弃物,几十年后这些当时认为处置安全的废弃物开始泄漏,到80年代开始,感到非治不可,但时至今日,地下污染物的空间位置及其污染流变范围都不清楚,于是通过地球物理勘查,重新圈定地下污染物的空间位置。

应用地球物理探测 *** ,对地下污染物的探测和监测,防止污染扩散,保护环境。概括来看,目前主要用在以下几个方面:

(1)用于废物填埋场选址调查[6]。工业生产废物和人类生活垃圾不仅量大而且成分复杂,有毒有害物质混杂其间,经雨水淋滤产生渗漏液侵入地下污染土壤和地下水水源。因此,选择远离地下水且致密的防渗岩(土)层作为垃圾填埋场地是重要的。主要用电阻率法、瞬变电磁法、探地雷达、折射地震和放射性测井。目的在于查明地下:①基岩面形状;②地表粘土层的结构;③地下水位及含水层分布范围及地下水流向;④基岩结构及构造;⑤地下暗河及河道分布。

(2)一些发达国家常以地球物理监测作为垃圾填埋场和废物堆放场的档案资料。从垃圾填埋(堆放)开始,直至垃圾填埋场终止封场后延续30年进行监测,跟踪监测表明,固体垃圾降解很缓慢,以固体垃圾溶解物总量(TDS)为例,前10年降解1/2,20年时余1/5,30年后余1/10;氯离子、 *** 盐等30年只降解1/10。一旦发现泄漏且有扩散危险,应立即进行处理。所用的探测 *** 主要是电阻率法和瞬变电磁法。激发极化法也有良好的效果。而我国还没有建立监测制度。

(3)追踪污染源。根据地下环境中水流与污染物迁移模型以及地层渗透率的差异,或者存在地下古河道、断裂、裂隙,使地下水和污染物在地下形成一定的迁移轨迹。在某井位或河边、海岸发现污染可以利用地球物理 *** 追踪探测出迁移路线,查出污染源所在地,为污染防治提供资料,主要利用电阻率法。

(4)探查垃圾填埋场衬底塑料膜出现漏洞位置。由于受压、承重等原因使衬底塑料出现漏洞,使填埋场的渗漏液外泄。为了修复需要及时找到漏洞位置。主要利用直流电阻率法。

(5)地下废弃物的调查。故旧废弃物和垃圾堆放场填埋多年,现移作他用,为了重新处理,需了解其分布范围和确定深度。主要采用电阻率法、地震雷达法等。

(6)废弃物堆放场对土壤和地下水污染的监测。矿山废弃物、选矿和冶金废弃物,化工厂和药厂等可能成为污染源的堆放场进行监测。主要使用电法、磁法和土壤氡测量 *** 等。

(7)地下储油罐和输油管泄漏探测。加油站世界林立,仅北京市就有1100多处。美国探测证实上世纪70年代以前建的加油站几乎全部有泄漏。因此,加油站是土壤和地下水的主要污染源之一,对加油站进行常规监测是必要的。常用的探测 *** 有自然电位、电阻法以及挥发性气体(CH4)法等。用土壤氡气测量法也有良好效果。我国也做了试验监测工作。

(8)深埋废液处理场的监测。随着区域地质结构变化和地下水位变化,废液可能发生迁移和外溢,所以监测是必要的。一般用自然电位法圈定二次污染范围。

(9)核电厂对核废物处置场有深埋和浅埋两种,其选址要求和 *** 各不相同。浅埋与垃圾场选址类似。深埋选址是永久性的,要进行深部选择勘查。选址是极为慎重的地质勘查工作。深埋选址一般要选择区域地层稳定,没有裂缝断层、渗透系数极小的岩层。主要使用深部探测的重力、磁法和电磁法以及地震 *** 。

现举两个应用实例如下。

2.1 保定韩村地下垃圾填埋场勘查

保定韩村垃圾堆放场,占地200m×200m,后来加盖1.5m原土层,掩埋了垃圾堆多年,成为平地。四周已有建筑。急需查明地下垃圾堆的污染区域,以利整治(杨进,刘兆平等,2006)[7]。

为了取得好的效果,探测工作以高密度电阻率法和探地雷达为主。用了5种探测 *** ,测线以东西方向3条,南北方向4条,均匀分布,每条测线长度为200m。

2.1.1 高密度电阻率法

沿测区7条测线:4条南北向(HCH.1.4.7.10),3条东西向(HCH.11.12.13)进行剖面测量。使用电极64,点距3m。根据北京市北神树等3个垃圾填埋场渗沥液的实测电阻率资料,对比本区土壤的电性特征,每个剖面图可划分出4个电性层。其对比数值列于表3。可见视电阻率小于15Ω·m的区域为垃圾及其污染区。本区掩埋的故垃圾堆及其形成的污染区分带图如图4所示。

表3 工作区污染带异常划分表

2.1.2 探地雷达法

共测6条剖面,南北向4条,东西向2条,与高密度电阻率法同步进行。使用SIR-3000仪器,100MHz天线。探测深度10~15m。剖面图电磁波信号分区明显。根据本测区电性特征,进行对比。可以认为视电阻率1~10Ω·m,相对应的介电常数均为5~100;电磁波传播速度均在0.047~0.13m/ns。为此得到本测区垃圾污染区埋深在2.5~3.5m以下,如图5所示,为资料解释结果。

对已掩埋多年的韩村地下垃圾场探测后根据异常区,用洛阳铲和挖掘的 *** 进行了验证,证明在深1.5m以下见到垃圾,说明探测结果是可靠的。

图4 韩村测区HCH.1.4.7.10线剖面污染异常分带图

图5 韩村测区HCH.1.4.7.10线雷达资料解释

2.2 安家楼第三加油站漏污染探查

北京市朝阳区安家楼住总第三加油站,1995年春发现泄漏,致使位于东南的自来水厂部分停产。7月某物探与化探研究所以氧化还原电位法、磁化率以及气烃(CH4和C2H4)测量 *** ,同时进行了面积勘查。由于周围都是道路和建筑,测线基本上沿马路两侧以及住总三公司停车场院内,宝马汽车维修中心院内空旷地区布置。

氧化还原电位,设备轻便,在人行杂乱的市区工作方便。其测量结果的等值图(5mV间隔)列于图6。由图可见,地下漏油的展布与该地区的地下水流方向一致(南偏东方向)。

土壤磁化率 *** ,土壤气烃 *** 测量获得的油污染展布与氧化还原电位测量结果非常吻合,展布方向的趋势也基本一致。

轻烃(CH4)和重烃(C2H4)是直接抽取土壤中CH4(甲烷)和C2H6(乙烷)测量的结果,其平面等值图与氧化还原电位也完全一致。

经过加油站核实,先后泄漏柴油78吨。开挖对污染土壤进行清理、更换。证明柴油逐步漏入地下包气带和潜水层,其地下分布于探测结果完全相符。

图6 北京朝阳某加油站漏油污染氧化还原电位等值图

美国杨百翰大学用探地雷达在亚利桑那州的Tuba城探测汽油罐漏油污染土壤和地下水。首先用探地雷达圈出漏油污染区,其次是钻孔取样分析油的含量,监测孔确定地下水位和流向,第三步是将雷达探测结果与钻孔土样、水分析结果进行对比,最终确定漏油引起的污染范围和深度。研究认为,由于油污一部分出现在潜水面之上,另一部分流入浅水面下方的饱水带,使电磁波反射变得模糊不清。所以,图7中雷达信号反射增强部分对应于漏油处。探地雷达用的80MHz天线频率。

图7 石油罐泄漏区上的探地雷达记录(中心频率80MHz)

主要参考文献

[1]陆业海.新滩滑坡征兆期及成功的监测预报[J].水土保持通报,1985,(5):1~8.

[2]郭建强.地质灾害勘查地球物理技术手册[M].北京:地质出版社,2003.

[3]程业勋,杨进.环境地球物理学概论[M].北京:地质出版社,2005.

[4]蒋宏耀,程业勋.环境与地球物理,地球物理科普文选(第三集)[M].北京:地震出版社,1997.

[5]中国环境科学学会.2008—2009环境科学技术学科发展报告[M].北京:中国科学技术出版社,2009.

[6]余调梅,朱百里编译.废弃物填埋场设计[M].上海:同济大学出版社,1999.

[7]刘兆平.地球物理 *** 在垃圾填埋场的应用研究[D].北京:中国地质大学(北京),2010.

地质雷达

3.3.7.1 *** 简介

3.3.7.1.1 基本原理

地质雷达也称探地雷达,是利用高频电磁波束在界面上的反射来探测目标物,由发射天线和接收天线组成。发射天线向地下发射高频短脉冲电磁波,接收天线则接收来自地下介质交界面的反射电磁波。由于电磁波向地下传播速度主要受地下介质电性控制,在介质电性发生变化的界面,电磁波会发生反射。通过研究电磁波在介质中的传播速度、介质对电磁波的吸收及介质交界面的反射,并用时间剖面图像表示出地下各分界面的形态,从而推测地下地质体及地层结构的分布规律。

3.3.7.1.2 应用范围及适用条件

地质雷达是一种高分辨率探测技术,可以对浅层地质问题进行详细的地质填图,浅层埋藏物进行无损探测。由于电磁波能量在碳酸盐岩区衰减快,勘探深度较浅主要适用于碳酸盐岩 *** 或覆盖层浅的地区,目前广泛用于地基探查、地下空洞、岩溶、破碎带、断层等地质构造探测。

要求发射的电磁波能量必须足够大,探测距离能够达到目标体,并能返回地面被系统接收;目标体阻抗差别足够大,有足够的反射或散射能量为系统所识别;目标体的几何形态必须尽可能了解清楚,正确选用天线中心频率;测区干扰不足以影响目标物的反射信息。

3.3.7.1.3 工作布置原则与观测 ***

主测线应垂直地下目标体走向,辅助测线平行目标体走向,可更好地反映目标体形态,测线应尽量通过已有的井位,以利于地层的对比。

目前常用的观测 *** 有剖面法和宽角法两种。

剖面法:发射天线和接收天线以固定间距沿测线同步移动的一种测量方式。

宽角法:发射天线固定在地面某一点上不动,而接收天线沿测线逐点移动,记录地下各个不同界面反射波的双程走时的测量方式。

3.3.7.1.4 资料整理及成果解释

检查验收合格的原始数据,经滤波及二维偏移归位等处理,经过反射层的拾取,编绘探地雷达图像剖面,最终形成推断成果图等。

由于雷达反射界面是电性界面,与地层分界面并不一致,如相邻地层有相近的波阻抗、同一岩层中的含水带界面、多个薄层的地质界面组合等。同时雷达时间剖面转换为深度剖面的精度,分辨率的限制,旁侧界面反射波的影响等因素,给雷达资料带来很多假象,使雷达剖面解释存在多解性。因此成果解释必须结合地质、钻探资料,根据反射波组的波形与强度特征,通过同相轴的追踪,确定反射波组的地质意义,建立测区地质—地球物理模型,构筑地质—地球物理综合解释剖面。

3.3.7.2 试验情况

本次实验主要选择了表层带富水块段纳堡村地区、天然出露的岩溶水源地皮家寨工区,目的是为了查明地表至30m深度的盖层结构、完整稳定性、水文地质结构、岩溶发育特征及富水性。对 *** 型隐伏的岩溶水源地大衣村和万亩果园及覆盖型隐伏的岩溶水源地三家村和大兴堡实验区拟实施钻孔位置也布置了少量地质雷达剖面。共布置剖面94条,总长3.4km,其中纳堡村实测66条剖面,长1635m。

本次试验使用SIR-20型地质雷达,天线类型SIR-100MHZ,扫描时窗250~600ns,工作 *** 为连续剖面测量。

3.3.7.3 主要成果

纳堡村探测结果,表层结构大致分为两层:之一层为第四系覆盖层,岩性为粘土,厚度在2~6m,时窗为0~100ns,表现为能量强、频率较高,连续性较好的波组特征;第二层为个旧组风化灰岩,厚度8~16m,时窗为50~300ns,表现为能量较弱且变化大、频率较低,连续性差的波组特征;向下则表现为无明显反射或杂乱零星反射的“平静带”波组特征,表明已进入基岩(完整灰岩)层。

图3-18为纳堡小学L20线的测量结果,雷达反射波大致分为三层,之一层时窗0~80ns,为能量强、频率较高的波组特征,深度约5m,反映了第四系覆盖层;第二层时窗80~300ns,为能量弱、变化大、频率较低的波组特征,深度约5~16m,反映了风化灰岩层;第三层时窗300ns以上,为无明显反射或杂乱零星的波组特征,推断已进入完整的灰岩层。在剖面10~15m处,时窗范围160~200ns,深度约9~12m范围内,地质雷达记录出现明显的强反射波异常,推断解释为岩溶裂隙含水层。经施工的浅钻验证,覆盖层厚5.15m,5.15~15m岩溶发育,以溶隙、溶洞、溶孔为主,为主要含水层段,涌水量36m3/d,15m以下岩溶不发育,富水性弱,与推断结果吻合。

图3-18 泸西小江流域纳堡村纳堡小学L20线地质雷达曲线

纳堡村宾珍红商店地质雷达测量未发现异常,反射波为明显的两层,顶部覆盖层为高能量波特征,时窗0~100ns,厚度约6m,下部为基岩的平静弱反射波特征,经ZK2浅钻验证,基岩埋深6.7m,孔深30.3m未见水,探测结果与验证结果一致。

纳堡村实验点共圈出8处地质雷达异常,经钻孔验证4处,除1处水量小外,3处表层岩溶水较丰富。

图3-19为皮家寨大泉旁实测地质雷达剖面,大致可分为两层,之一层时窗0~60ns,波组连续稳定,反映出第四系覆盖层厚度为1~3m;时窗60~300ns,地质雷达曲线显示为杂乱反射、振幅变强、频率变低的异常现象,推断该区地下3~16m之间的个旧组灰岩中岩溶裂隙较为发育,局部存在较大充填或未充填的溶洞,如L73线7m、28m、55m处推断为岩溶含水区,与高密度电法38线100~110点的低阻异常对应。经钻孔验证,溶洞,溶孔发育,与推断结果吻合。

图3-19 泸西小江流域皮家寨L73线地质雷达曲线

3.3.7.4 结论

地质雷达反射波组特征:岩溶裂隙含水层为明显的强反射波异常;第四系覆盖层为能量强、频率较高,连续性较好的反射波;风化灰岩层为能量较弱且变化大、频率较低,连续性差的反射波;完整灰岩层为无明显反射或杂乱零星反射的“平静带”特征。

地质雷达在探测深度0~30m范围内,分辨率较高,对表层岩溶裂隙发育带探测效果较好,划分的覆盖层厚度较接近,误差均小于1m。推断的岩溶发育异常带,准确度很高,是表层岩溶找水的有效 *** 之一。

地质雷达探测工作布置原则

1、操作测试天线的工人必须佩戴安全帽、腰系安全带、手带手套、操作平台的防护围栏必须高过工人的腰部。

2、在测试隧道拱腰时,操作天线的工人手举天线的手必须高过平台防护围栏的高度,手扶围栏时绝对禁止手扶靠近衬砌且与衬砌平行的围栏,以免夹上工人的手臂或手掌。

3、在测试拱顶和拱腰时,操作测试天线工人旁的观测工人应该随时注意围栏与拱顶、拱腰的距离,指挥检测台车司机操作平台的空间位置,防止撞上衬砌导致平台垮塌,酿成大事故。

4、在测试前,请隧道队将测试段落上的车辆、杂物等清理干净,方便测试检测台车或测试人员通过。

5、严禁使用挖掘机作为测试平台。

 探地雷达

11.6.1 基本原理

探地雷达(Geologic Radar或Earth Pobing Radar)主要研究电磁波在介质中传播的速度,介质对电磁波的吸收,以及电磁波在介质交界面的反射。

11.6.1.1 电磁波在介质中的传播速度

探地雷达测量的是地下界面的反射波走时 t,为了获取地下界面的深度 h=tv/2,必须有介质的电磁波传播速度v:

地质灾害勘查地球物理技术手册

式中:c为真空中电磁波传播速度,c=0.3m/ns;ε,为相对介电常数,是介质介电常数ε与真空的介电常数ε0的比值。

11.6.1.2 电磁波在介质中的吸收特性

吸收系数α决定了场强在传播过程中的衰减率,对非良导电、非磁性介质,α的近似值为

地质灾害勘查地球物理技术手册

即α与导电率σ成正比,与介质导磁率μ和介电常数ε比值的平方根成正比。

11.6.1.3 反射定律与反射系数

电磁波(又称入射波)到达介质的电性分界面时,会发生反射,被界面反射而返回的电磁波称为反射波。反射波与入射波界面处的运动学特征(即传播方向)遵循反射定律,即入射角θi(入射方向与界面法线向的夹角)等于反射角θr(反射方向与界面法线方向的夹角)。

电磁波在到达界面时,还将发生能量的再分配。入射波、反射波和折射波三者之间能量关系,因入射波电磁场相对界面的方向(极化特性)不同而异。当电场平行于界面时,电磁波从介质1入射到介质2时的电场反射系数 R12为

地质灾害勘查地球物理技术手册

对于非磁性、非良导电介质,

。垂直入射时11.6.2 观测 ***

地质灾害勘查地球物理技术手册

探地雷达尽管型号很多,但都可以看成是由接收、发射两部分组成。发射部分通过天线向地下发射超高频宽带短脉冲电磁波,接收部分通过天线接收来自地下介质交界面的反射电磁波。目前常用的探地雷达观测方式有剖面法和宽角法两种。

11.6.2.1 剖面法

剖面法是发射天线(T)和接收天线(R)以固定间距沿测线同步移动的一种测量方式。当发射天线与接收天线间距为零,亦即发射天线与接收天线合二为一时,称为单天线形式,反之称为双天线形式。剖面法的测量结果可以用探地雷达时间剖面图像来表示。该图像的横坐标记录了天线在地表的位置;纵坐标为反射波双程走时,表示雷达脉冲从发射天线出发经地下界面反射回到接收天线所需的时间。这种记录能准确反映测线下方地下各发射界面的形态。图11-8为剖面法示意图及其雷达图像剖面。

图11-8 剖面法示意图及雷达图像

11.6.2.2 宽角法

为了原位测量地下介质的电磁波速度,在探地雷达工作中还常采用宽角法或共中点法观测方式。一个天线固定在地面某一点上不动,而另一天线沿测线移动,记录地下各个不同界面反射波的双程走时,这种测量方式称为宽角法。也可以用两个天线,在保持中心点位置不变的情况下,改变两个天线之间距离,记录反射波双程走时,这种测量方式称为共中心点法。当地下界面平直时,这两种 *** 结果一致。这两种测量 *** 的目的是求取地下介质的电磁波传播速度。图11-9是共中心点观测方式示意图及其雷达图像。

深度为h的地下水平界面的反射波双程走时t满足:

地质灾害勘查地球物理技术手册

式中:x为发射天线与接收天线之间的距离;h为反射界面的深度;v为电磁波的传播速度。当地层电磁波速度v不变时,t2与x2成线性关系。用宽角法或共中心点法测量得到地下界面反射波双程走时t,再利用公式(11.9)就可求得地层的电磁波速度。

11.6.3 技术要求

11.6.3.1 测线布置原则

探地雷达的野外工作常常是沿测线进行的,沿测线采集到的数据经处理后的成果就是探地雷达剖面(时间剖面或深度剖面),它是探地雷达资料解释的基本依据。测线布置的基本原则如下。

(1)主测线应垂直地下目标体走向,辅助测线平行目标体走向,目的是更好地反映目标体形态,同时也可以避免大量异常波的出现;

图11-9 共中心点观测方式与雷达图像

(2)测线应尽量通过已有的井位,以利于地层的对比。

11.6.3.2 分辨率

分辨率是地球物理 *** 分辨最小异常体的能力。分辨率可分为垂向分辨率与横向分辨率。类似于地震勘探,通常将探地雷达剖面中能够区分一个以上反射界面的能力称为垂向分辨率。

为了研究方便,选用处于均匀介质中一个厚度逐渐变薄的地层模型。电磁波垂直入射时,则有来自地层顶面、底面的反射波以及层间的多次波。多次波的能量较弱,所得到的雷达信号为顶面反射波与底面反射波的合成。依照相应地层厚度的时间关系所得地层顶面的反射波合成雷达信号见图11-10。由图可知,可取地层厚度 h=A/4作为垂直分辨率的下限。

探地雷达在水平方向上所能分辨的最小异常体的尺寸称为横向分辨率。雷达剖面的横向分辨率通常可用菲涅尔带加以说明。设地下有一水 *** 射面,以发射天线为圆心,以其界面的垂距为半径,作一圆弧与反射界面相切,此圆弧代表雷达到达此界面时的波前,再以多出1/4及1/2子波长度的半径画弧,在水平面界面的平面上得到两个圆。其内圆称为之一菲涅尔带,两圆之间的环形带称作第二菲涅尔带。根据波的干涉原理,法线反射波与之一菲涅尔带外缘的反射波的光程差λ/2(双程光路),反射波之间发生相长性干涉,振幅增强。之一带以外诸带彼此消长,对反射的贡献不大,可以不考虑。设反射界面的埋深为 h,发射、接收天线的距离远远小于h时,之一菲涅尔带半径可按下式计算:

图11-10 地层厚度对波形影响示意图(据Widess 1973修改)

(a)为反射射线图解,b为地层厚度;(b)为单个反射波形,利用地层厚度算出的时间延迟把得自顶底界面的单个反射波形相加,即得到如(c)中的波形;(c)为复合反射波形,它是地层厚度的函数,T为入射子波主周期,λ2=tv为地层内的波长。等时线间隔为t/2。标有x的线为波谷时间线,点线为零振幅时间线,为各复合子法的中心线;(d)为振幅与视厚度的定义

地质灾害勘查地球物理技术手册

式中:λ为雷达子波的波长;h为异常体的埋藏深度。

图11-11为处于同一埋深、间距不同的两个金属管道的探地雷达图像。该图像在水槽中获得,实验使用铁管φ5cm,钢管φ3cm。测量时使用中心频率为100MHz天线,其在水中的子波波长λ=0.33m。从图中可以看出一些内容:①处在深度为1.06m的φ3cm铁管仍可以很清晰地为探地雷达所分辨,由于其管径约为0.1rf,说明探地雷达对单个异常体的横向分辨率要远小于之一菲涅尔带的半径。②图11-10(a)两管间距0.5m大于之一菲涅尔带半径,由雷达图像可以准确把两管水平位置确定出来;(b)两管间距0.4m小于之一菲涅尔带半径rf=0.42m,已很难用雷达图像确定两管精确位置。这表明区分两个水平相邻的异常体,其最小横向距离要大于之一菲涅尔带半径。

11.6.3.3 探测距离与探距方程

探地雷达能探测最深目标体的距离称为探地雷达的深测距离。当雷达系统选定后,系统的增益 Q。就确定。Qs为最小可探测的信号功率 Wmin与输入到发射天线的功率Wt之比,即:

图11-11 两个同深金属管的地质雷达图像

(a)钢管(右)直径3cm,顶深1.06m;铁皮管(左)直径5cm,顶深1.04m,管中心距0.5m;(b)钢管(右)顶深0.52m;铁皮管(左)顶深0.5m,管中心距0.4m;(c)钢管(右)顶深1.04m;铁皮管(左)顶深1.06m,管中心距0.4m

地质灾害勘查地球物理技术手册

探地雷达从发射到接收的过程中能量会逐渐损耗。雷达系统从发射到接收过程中的功率损耗 Q可由雷达探距方程来描述。

地质灾害勘查地球物理技术手册

式中:ηt、ηr分别为发射天线与接收天线的效率;Gt、Gr分别为在入射方向与接收方向上天线的方向性增益;g为目的体向接收天线方向的后向散射增益;σ为目的体的散射截面;α为介质的吸收系数;r为天线到目的体的距离;λ为雷达子波在介质中的波长。

满足Qs+Q>0的更大距离r,称为探地雷达的深测距离,亦即处在距离 r范围内的目的体的反射信号可以为雷达系统所探测。

11.6.3.4 探地雷达 *** 有效性评价

每接受一个探地雷达测量任务,都需要对探地雷达解决地质问题的有效性进行评价,以确定探地雷达测量能否取得预期效果。

(1)目标体深度是一个非常重要的问题。如果目标体深度超出雷达系统探测距离,则探地雷达 *** 就要被排除。雷达系统探测距离可根据雷达探距方程(11.12式)进行计算。

(2)目标体几何形态(尺寸与取向)必须尽可能了解清楚,包括高度、长度与宽度。目标体的尺寸决定了雷达系统可能具有的分辨率,关系到天线中心频率的选用。如果目标体为非等轴状,则要搞清目标体走向、倾向与倾角,这些将关系到测网的布置。

(3)目标体的电性(介电常数与导电率)必须搞清。雷达 *** 成功与否取决于是否有足够的反射或散射能量为系统识别。当围岩与目标体相对介电常数分别为εh与εT时,目标体功率反射系数的估算式为:

地质灾害勘查地球物理技术手册

一般说目标体的功率反射系数应大于0.01。

(4)测区的工作环境必须搞清。当测区内存在大范围金属构件并成为无线电射频源时,将对测量构成严重干扰,在进行资料解释时必须加以排除。

11.6.4 信号处理

11.6.4.1 滤波技术

探地雷达测量中,为了保持更多的反射波特征,多采用宽频带进行记录,但在记录各种有效波的同时,也记录了各种干扰波。一维滤波技术就是利用频谱特征的不同来压制干扰波,以突出有效波,它包括一维频率域滤波和一维时间域滤波。

探地雷达数据中,有时有效波和干扰波的频谱成分十分接近甚至重合,这时无法用频率滤波压制干扰,需要用有效波和干扰波在空间位置上的差异进行滤波。这种滤波要同时对若干道进行计算才能得到输出,因此是一种二维滤波。

二维滤波原理是建立在二维傅里叶变换基础上的。沿地面观测频率波数谱 G(ω,kx)是频谱的时空函数。

地质灾害勘查地球物理技术手册

地质灾害勘查地球物理技术手册

上式说明,g(t,x)是由无数圆频率为ω=2πf,波数为kx的平面简谐波所组成,它们沿测线以视速度v*传播。

如果有效波和干扰波的平面简谐波成分有差异,有效波的平面谐波成分与干扰波的平面谐波成分以不同的视速度传播,则可用二维视速度滤波将它们分开,达到压制干扰、提高信噪比的目的。

11.6.4.2 二维偏移归位处理 ***

探地雷达测量的是来自地下介质交界面的反射波。偏离测点的地下介质交界面的反射点只要其法平面通过测点,都可以被记录下来。在资料处理中需要把雷达记录中的每个反射点移到其本来位置,这种处理 *** 被称为偏移归位处理。经过偏移处理的雷达剖面可反映地下介质的真实位置。常用的偏移归位 *** 有绕射偏移、波动方程偏移和克希霍夫积分偏移,有关偏移 *** 可参考相关地球物理信号处理书籍。

11.6.5 数据处理 ***

数据处理的目的是对原始雷达记录进行初步加工处理,使实测的雷达资料更便于计算机处理。常用的处理 *** 有不正常道处理与多次叠加处理。

当天线与地面接触不良,或者由于发射电路工作不正常产生废记录道,在预处理时必须废除该道记录,并用相邻道的均值补全。

在地下介质对电磁波吸收较强的测区,为了增加来自地下深处的信息,加大探地雷达的探测深度,常常使用多次叠加技术。目前适用于探地雷达多次叠加处理的测量 *** 有两种:一种是多天线雷达测量系统,应用一个发射天线,多个接收天线同时进行测量;另一种是多次覆盖测量,使用几种不同天线距的发射—接收天线沿测线进行重复测量。多次覆盖测量在同一测点上有几组共反射点的雷达数据,经天线距校正后,进行叠加使得来自地下的反射波得到加强,而干扰波信号大大减弱,从而增加了探测深度。

11.6.6 成果表达形式

(1)探地雷达实际材料图集中显示雷达测网布置;

(2)雷达剖面成果图显示雷达测线下地层与构造形态;

(3)平面等值线图表达测线范围内某些目的层分布特征,其中包括基岩高程图、目的层等深图等;

(4)雷达推测成果图,包括推断构造分布、滑体范围成果图,岩溶平面分布图等;

(5)三维雷达成果,包括垂直切片图、水平切片图、三维体显示以及格栅显示图。

11.6.7 资料解释原则

探地雷达资料的地质解释是探地雷达测量的目的,这项工作通常是在数据处理后所得到的探地雷达图像剖面中,根据反射波组的波形与强度特征,通过同相轴的追踪,确定反射波组的地质含义,构筑地质—地球物理解释剖面并依据剖面解释获得整个测区最终成果图,为地质灾害的治理方案提供依据。

探地雷达资料反映的是地下介质的电性分布,要把地下介质的电性分布转化为地质情况,必须要把地质、钻探、探地雷达这三方面的资料结合起来,建立测区的地质—地球物理模型,并以此得到地下地质模式。

11.6.7.1 雷达剖面与地质剖面的关系

雷达剖面不是地质剖面的简单反映,两者既有内在联系,又有区别。

(1)雷达反射界面与地层界面的关系

雷达反射界面是电性界面,而地质剖面反映的是岩层界面。地层划分的依据是岩性、生物化石种类及沉积时间等。地质剖面中由于沉积间断或岩性差异而形成的面,如断层面、侵蚀不整合面、流体分界面及不同岩性的分界面,均可成为反射面,这时反射面与地质分界面是一致的,即大多数雷达反射面大体上反映地层界面的形态。然而在许多情况下,反射面与钻井或测井所得到的地质剖面的地层分界面并不一致。主要体现在以下几种情况:

首先是有些埋藏深的古老地层,在长期的构造运动和压力的作用下,相邻地层可能有相近的波阻抗,因而地质上的层面不足以构成反射面。

其次,同一岩性的地层,其中既无层面又无岩性分界面,但由于岩层中所含流体成分不同,而构成物性界面,如饱水带与饱气带界面,因而雷达反射界面有时也并非是地质界面。

再次,雷达反射面是以同相轴表达的,当多个薄层组成多个地质界面时,在雷达剖面中由于雷达子波有一定的延续度使多个薄层界面的反射波叠加成复合波形,从而产生反射波界面与地层界面的不一致。

(2)雷达反射界面的几何形态与地质构造关系

雷达反射波剖面图像一般可以定性反映地质构造形态,尤其当构造形态比较简单时,反射波同相轴的几何形态所反映的地质构造是直观的、明显的。但由于分辨率限制及其噪声,雷达剖面反映构造细节有限,使两者之间存在不少差别。

首先,雷达剖面通常是时间剖面而地质剖面是深度剖面。雷达时间剖面要经过时深转换后才能成为深度剖面。时深转换后的雷达深度剖面与地质剖面的符合程度,主要取决于速度资料的可靠程度。速度不准,会导致雷达深度剖面上的反射层与地质剖面上的真实地层不符,甚至会引起构造畸变。

其次,由于雷达波的垂向分辨率的限制,致使在薄层情形下,雷达反射层与地质层位往往不是一一对应的,有可能一个地质界面对应多个雷达相位,多个薄的地层界面对应多个雷达相位。

再次,只要观测点处在界面的法线上,就会接收到旁侧界面的反射波,使雷达剖面上所反映的地质构造在空间上发生了偏移。尤其当地质构造比较复杂时,雷达剖面上反射波同相轴的几何图形并不能直接反映复杂构造的真实形态,甚至面目全非,给雷达资料带来很多假象,使得雷达剖面解释存在多解性。

11.6.7.2 雷达时间剖面对比

时间剖面的对比就是在雷达反射波时间剖面上,根据反射波的运动学和动力学的特征来识别和追踪同一反射界面反射波的过程。它实际上包括两方面的工作,一个工作是在某条剖面上根据相邻接收点反射波的某些特点来对比同一界面反射波,一般叫波的对比;另一个工作是在相邻多条雷达剖面上追踪同一界面的反射波,称为时间剖面的对比。在时间剖面上对比反射波,严格地说应该对比反射波的初至。但是,由于反射波是在各种干扰背景下记录下来的,当子波为最小相位时,其初至很难辨认。为了便于对比,总是利用剖面上比较明显的波形相位对比。一个反射界面在雷达剖面上往往包含有几个强度不等的同相轴,选其中振幅最强、连续性更好的某个同轴相进行追踪,这叫做强相位对比,有时反射层无明显的强相位,可对比反射波的全部或多个相位,这称为多相位对比。另外还可以利用波组和波系进行对比。波组是指由三四个数目不等的同相轴组合在一起形成的,或指比较靠近的若干界面所产生的反射波组合。由两个或两个以上波组所组成的反射波系列,称为波系。利用这些组合关系进行波的对比,可以更全面考察反射层之间的关系。因为从地质观点来说,相邻地层界面的厚度间隔、几何形态是有一定联系的,沿横向变化是渐变的,反映在时间剖面上反射波在时间间隔、波形特征等方面也是有一定规律的。有时在剖面的某段长度内,因某种原因(如岩性横向变化)有的同相轴质量较差(振幅弱、连续性差),我们可以根据反射波相互之间总的趋势的极值点(波峰或波谷)依次对比同相位。所以波的对比又称为波的相位对比或称同相轴对比。

11.6.8 仪器设备

探地雷达仪器设备见表11-6。

表11-6 探地雷达一览表

参考文献

傅良魁主编.1983.电法勘探教程,北京:地质出版社

李大心.1994.探地雷达 *** 及其应用,北京:地质出版社

李金铭,罗延钟主编.1996.电法勘探新进展,北京:地质出版社

刘煜洲等.1994.甚低频电磁法边界元数值模拟及地形影响与改正,物探与化探,Vol.18.No.6

刘天佑.2002.应用地球物理的数据采集与处理,武汉:中国地质大学出版社

史保连.1986.甚低频电磁法,北京:地质出版社

王兴泰等.1996.工程与环境物探新 *** 新技术,北京:地质出版社

Annan A.P.,Cosway,S.W.,1992.Ground Penetrating Radar Survey Design,Annual Meeting of SAGEEP,Chicago

Daniels,J.J.,Guntun,D.J..and Scott,H.F.,1988.Introduction to Subsurface Radar,IEE Proceeding,135(4),278~300

J.P..VanGestl,P.L.,Stoffa,2000.Migration using multiconfiguration GPR data,Proceedings of the 8th International Conference on GPR,Australia

探地雷达的探地雷达技术参数

1)雷达系统控制器计算机(工业一体式专用电脑,强抗震性能设计):

处理器:Intel Celeron 400MHz或更好配置

雷达界面卡:专用

内存:≥512MB

硬盘(编程和存储):≥4G

显示器: 10.4英寸超高亮度透反射日光下可读彩色液晶显示器

电源:10.5~18 VDC@ 45W(室内可交流电直接供电,室外可由充电电池提供电源)

基于Windows XP操作系统的全屏幕菜单系统,内置雷达数据采集和处理控制软件

触摸屏界面,可外接使用键盘和鼠标

提供以下输入/输出端口:雷达界面接口,两个USB接口,电源接口

2)天线控制单元:

总体动态范围:130dB

接收器动态范围:90dB

最小时间范围:6.3ns

更大时间范围:820ns

脉冲重复时间:1μs

有效带宽:3GHz

3)可与100MHz、250 MHz、500 MHz、1000 MHz和2000 MHz屏蔽天线配合使用,以满足不同的探测深度要求。

关于地灾资质探地雷达要求和地质雷达适用条件的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

客服微信号码

客服微信号码

客服微信号码

客服微信号码

留言咨询
提交留言

您将免费获得

  • 全面诊断

    您将获得专家对您公司申请资质所需条件的全面诊断服务,我们不同于传统代办公司,仅是提供一些通用的,浅显的建议

  • 找出疏忽点

    我们在了解您公司的基本情况之后,将挖掘出您公司目前不利于资质申请的疏忽点,还将详细说明您在申请资质时应当改善的确切的事项。

  • 分析需求

    我们通过丰富的从业经验,结合目前的实际情况,确认好符合您实际经营情况的资质需求。

  • 定制方案与报价

    对您的需求深入了解后,将结合您公司目前的情况,我们将为您量身定制一份资质代办方案及报价单。

获取方案

×
请设置您的cookie偏好
欢迎来到资质参谋
我们希望在本网站上使用cookie,以便保障本网站的安全、高效运转及服务优化,有关我们使用cookie的更多信息,请点击查看了解更多。
接收Cookies
决绝Cookies